guide:3655fdf998: Difference between revisions

From Stochiki
No edit summary
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\R}{\mathbb{R}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Rbar}{\overline{\mathbb{R}}}
\newcommand{\Bbar}{\overline{\mathcal{B}}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\one}{\mathds{1}}
\newcommand{\0}{\mathcal{O}}
\newcommand{\mat}{\textnormal{Mat}}
\newcommand{\sign}{\textnormal{sign}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\mathds}{\mathbb}</math></div>
The notion of a <math>\sigma</math>-Algebra is related to one of the most general constructions, that of a ''topology''. To deal with Euclidean spaces and for the description of a natural notion of <math>\sigma</math>-Algebra, we need to take a closer look at the ''topological'' point of view. Therefore we want to describe some point set aspects of topology, basically also introduced in analysis.


{{definitioncard|Topological space|
Let <math>X</math> be a set. A topology on X is a family <math>\mathcal{O}</math> of subsets of <math>X</math> satisfying:
<ul style{{=}}"list-style-type:lower-roman"><li>The ground set is in <math>\mathcal{O}</math>, i.e. <math>X\in\mathcal{O}</math>,
</li>
<li>The empty set is in <math>\mathcal{O}</math>, i.e. <math>\varnothing\in\mathcal{O}</math>,
</li>
<li>(finite intersection) For <math>O_1,...,O_n\in\mathcal{O}</math> with <math>n\geq1</math> we get that <math>\bigcap_{i=1}^{n}O_i\in\mathcal{O}</math>,
</li>
<li>(arbitrary union) For <math>O_i\in\mathcal{O}</math> with <math>i\in I</math>, where <math>I</math> is any index set <math>I</math>, we get that <math>\bigcup_{i\in I}O_i\in\mathcal{O}</math>.
</li>
</ul>
The elements of <math>\mathcal{O}</math> are called open sets and the complements are called closed sets. Moreover, we call the tupel <math>(X,\mathcal{O})</math> a topological space.
}}
{{alert-info | [Hausdorff]
Let <math>(X,\mathcal{O})</math> be a topological space. The topology <math>\mathcal{O}</math> on <math>X</math> is said to be Hausdorff if and only if for all <math>x,y\in X</math> with <math>x\not=y</math> there is a <math>O_x\in\mathcal{O}</math> with <math>x\in O_x</math> and there exists a <math>O_y\in\mathcal{O}</math> with <math>y\in O_y</math>, i.e. <math>O_x\cap O_y=\varnothing</math>.
}}
{{definitioncard|Metric space|
Let <math>X</math> be a set. A metric is a map <math>d:X\times X\longrightarrow \mathbb{R}_{+}</math>, which, for all <math>x,y,z\in X</math>, satisfies the following.
<ul style{{=}}"list-style-type:lower-roman"><li>(zero distance) <math>d(x,y)=0\Longleftrightarrow x=y,</math>
</li>
<li>(symmetry) <math>d(x,y)=d(y,x),</math>
</li>
<li>(triangle inequality) <math>d(x,y)\leq d(x,z)+d(z, y),</math>
</li>
</ul>
We call a set <math>X</math> endowed with a metric, written <math>(X,d)</math>, a metric space.
If we have a norm <math>\|\cdot\|</math> on <math>X</math>, and we then consider a normed space <math>(X,\|\cdot\|)</math>, we get the relation <math>d(x,y):=\|x-y\|</math>, which defines a distance.
If <math>(X,d)</math> is a metric space, the topology on <math>X</math> is associated
with <math>d</math> and is, for some arbitrary index set <math>I</math>, given by
<math display="block">
\mathcal{O}_X^d:=\left\{\bigcup_{i\in I}B_{r_i}(x_i)\mid x_i\in X, r_i\in\mathbb{R}_{+}\right\},B_{r_i}(x_i):=\left\{y\in X\mid d(x_i,y) < r_i\right\}
</math>
}}
{{definitioncard|Basis and separability|
A topological space <math>(X,\mathcal{O})</math> is said to have a countable basis of open sets <math>\{w_n\}_{n\in\N}</math> if for every open set <math>O\in\mathcal{O}</math>, there exists a countable index set <math>I\subset\mathbb{N}</math>, such that
<math display="block">
O=\bigcup_{n\in I}w_n.
</math>
Moreover, a metric space <math>(X,d)</math> is said to be separable, if it contains a sequence <math>(x_n)_{n\in\mathbb{N}}</math> which is dense in <math>X</math>, that is, for all <math>x\in X</math> there exists a subsequence <math>(x_{n_k})_{k\in\N}</math> of <math>(x_n)_{n\in N}</math>, such that <math>d(x,x_{n_k})\xrightarrow{k\to\infty}0</math>.
}}
{{proofcard|Proposition|prop-1|A metric space is separable if and only if it has a countable basis of open sets.
|We first prove the direction <math>\Longrightarrow</math>. Therefore we can observe that <math>\mathscr{B}:=\{B_r(x_n)\}_{r_\in\Q_+,n\in\N}</math> is a basis of open sets, and thus we can write every open set as <math>O=\bigcup_{b\in\mathscr{B}\atop b\subset O}b</math>. Now let <math>x\in O</math>. Then there exists an <math>\varepsilon > 0</math>, such that <math>B_\varepsilon(x)\subset O</math> and there is a <math>n_0</math> with <math>d(x_{n_0},x) < \frac{\varepsilon}{4}</math> and thus <math>x\in B_{\frac{\varepsilon}{2}}(x_{n_0})\subset O</math>. Now we prove the direction <math>\Longleftarrow</math>. Let therefore <math>\{w_n\}_{n\in\N}</math> of open sets. Then we can choose a <math>x_n\in w_n</math> and check that the sequence <math>(x_n)_{n\in \N}</math> is a dense subset, which gives the claim.}}
{{definitioncard|Product topology|
Let <math>(X,\mathcal{O}_X)</math> and <math>(Y,\mathcal{O}_Y)</math> be two topological spaces. The product topology for the product space <math>X\times Y</math> is defined, with an arbitrary index set <math>I</math>, by the family of open sets
<math display="block">
\mathcal{O}_{X\times Y}:=\left\{\bigcup_{i\in I}O^X_i\times \mathcal{O}^Y_i\mid O^X\in \mathcal{O}_X,O^Y\in\mathcal{O}_Y\right\}.
</math>
}}
{{definitioncard|Continuity|
Let <math>(X,\mathcal{O}_X)</math> and <math>(Y,\mathcal{O}_Y)</math> be two topological spaces. A map <math>f:(X,\mathcal{O}_X)\longrightarrow(Y,\mathcal{O}_Y)</math> is continuous if and only if for all <math>O^Y \in\mathcal{O}_Y</math>, the image of <math>O^Y</math> under <math>f^{-1}</math> is open, that is
<math display="block">
f^{-1}(O^Y)=\{x\in X\mid f(x)\in O^Y\}\in\mathcal{O}_X
</math>
}}
{{definitioncard|Canonical projection|
Let <math>X</math> and <math>Y</math> be two sets. Then we can define the canonical projections to be the surjective maps
<math display="block">
\begin{align*}
\pi_X: X\times Y &\longrightarrow X\\
(x,y)&\longmapsto x
\end{align*}
</math>
<math display="block">
\begin{align*}
\pi_Y:X\times Y&\longrightarrow Y\\
(x,y)&\longmapsto y
\end{align*}
</math>
}}
{{alert-info |
A useful observation is that the product topology is defined in such a way that the canonical projections are continuous, that is
<math display="block">
\pi_X^{-1}(O^X)=O^X\times Y\in \mathcal{O}_{X\times Y},\pi_Y^{-1}(O^Y)=X\times O^Y\in\mathcal{O}_{X\times Y}
</math>
}}
{{alert-info |
We can also define a metric on two metric spaces <math>(X,d)</math> and <math>(Y,\delta)</math> given by
<math display="block">
D_p((x,y),(x',y'))=(d^p(x,x')+\delta^p(y,y'))^{\frac{1}{p}},
</math>
for <math>p\geq 1</math>.
}}
{{proofcard|Proposition|prop-2|Let <math>(X,\mathcal{O}_X)</math> and <math>(\mathcal{O}_Y)</math> be two topological spaces.
If <math>(X,\mathcal{O}_X)</math> and <math>(Y,\mathcal{O}_Y)</math> have a countable basis of open sets, then <math>(X\times Y,\mathcal{O}_{X\times Y})</math> also has a countable basis of open sets. Moreover, Let <math>(X,d)</math> and <math>(Y,\delta)</math> be two metric spaces. If <math>(X,d)</math> and <math>(Y,\delta)</math> are separable, then <math>(X\times Y, D_p)</math> is also separable.
|First, let <math>\mathcal{U}_X=\{U_n\}_{n\in\N}</math> be a basis of open sets on <math>X</math> and <math>\mathcal{V}_Y=\{V_n\}_{n\in\N}</math> a basis of open sets on <math>Y</math>. Then <math>\{U_n\times V_m\}_{(n,m)\in\N^2}</math> is a basis of open sets for <math>X\times Y</math>, which proves the first claim. We leave the second claim as an exercise for the reader.}}
==General references==
{{cite arXiv|last=Moshayedi|first=Nima|year=2020|title=Lectures on Probability Theory|eprint=2010.16280|class=math.PR}}

Latest revision as of 01:53, 8 May 2024

[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]

The notion of a [math]\sigma[/math]-Algebra is related to one of the most general constructions, that of a topology. To deal with Euclidean spaces and for the description of a natural notion of [math]\sigma[/math]-Algebra, we need to take a closer look at the topological point of view. Therefore we want to describe some point set aspects of topology, basically also introduced in analysis.

Definition (Topological space)

Let [math]X[/math] be a set. A topology on X is a family [math]\mathcal{O}[/math] of subsets of [math]X[/math] satisfying:

  • The ground set is in [math]\mathcal{O}[/math], i.e. [math]X\in\mathcal{O}[/math],
  • The empty set is in [math]\mathcal{O}[/math], i.e. [math]\varnothing\in\mathcal{O}[/math],
  • (finite intersection) For [math]O_1,...,O_n\in\mathcal{O}[/math] with [math]n\geq1[/math] we get that [math]\bigcap_{i=1}^{n}O_i\in\mathcal{O}[/math],
  • (arbitrary union) For [math]O_i\in\mathcal{O}[/math] with [math]i\in I[/math], where [math]I[/math] is any index set [math]I[/math], we get that [math]\bigcup_{i\in I}O_i\in\mathcal{O}[/math].

The elements of [math]\mathcal{O}[/math] are called open sets and the complements are called closed sets. Moreover, we call the tupel [math](X,\mathcal{O})[/math] a topological space.

[Hausdorff]

Let [math](X,\mathcal{O})[/math] be a topological space. The topology [math]\mathcal{O}[/math] on [math]X[/math] is said to be Hausdorff if and only if for all [math]x,y\in X[/math] with [math]x\not=y[/math] there is a [math]O_x\in\mathcal{O}[/math] with [math]x\in O_x[/math] and there exists a [math]O_y\in\mathcal{O}[/math] with [math]y\in O_y[/math], i.e. [math]O_x\cap O_y=\varnothing[/math].

Definition (Metric space)

Let [math]X[/math] be a set. A metric is a map [math]d:X\times X\longrightarrow \mathbb{R}_{+}[/math], which, for all [math]x,y,z\in X[/math], satisfies the following.

  • (zero distance) [math]d(x,y)=0\Longleftrightarrow x=y,[/math]
  • (symmetry) [math]d(x,y)=d(y,x),[/math]
  • (triangle inequality) [math]d(x,y)\leq d(x,z)+d(z, y),[/math]

We call a set [math]X[/math] endowed with a metric, written [math](X,d)[/math], a metric space. If we have a norm [math]\|\cdot\|[/math] on [math]X[/math], and we then consider a normed space [math](X,\|\cdot\|)[/math], we get the relation [math]d(x,y):=\|x-y\|[/math], which defines a distance. If [math](X,d)[/math] is a metric space, the topology on [math]X[/math] is associated with [math]d[/math] and is, for some arbitrary index set [math]I[/math], given by

[[math]] \mathcal{O}_X^d:=\left\{\bigcup_{i\in I}B_{r_i}(x_i)\mid x_i\in X, r_i\in\mathbb{R}_{+}\right\},B_{r_i}(x_i):=\left\{y\in X\mid d(x_i,y) \lt r_i\right\} [[/math]]

Definition (Basis and separability)

A topological space [math](X,\mathcal{O})[/math] is said to have a countable basis of open sets [math]\{w_n\}_{n\in\N}[/math] if for every open set [math]O\in\mathcal{O}[/math], there exists a countable index set [math]I\subset\mathbb{N}[/math], such that

[[math]] O=\bigcup_{n\in I}w_n. [[/math]]

Moreover, a metric space [math](X,d)[/math] is said to be separable, if it contains a sequence [math](x_n)_{n\in\mathbb{N}}[/math] which is dense in [math]X[/math], that is, for all [math]x\in X[/math] there exists a subsequence [math](x_{n_k})_{k\in\N}[/math] of [math](x_n)_{n\in N}[/math], such that [math]d(x,x_{n_k})\xrightarrow{k\to\infty}0[/math].

Proposition

A metric space is separable if and only if it has a countable basis of open sets.


Show Proof

We first prove the direction [math]\Longrightarrow[/math]. Therefore we can observe that [math]\mathscr{B}:=\{B_r(x_n)\}_{r_\in\Q_+,n\in\N}[/math] is a basis of open sets, and thus we can write every open set as [math]O=\bigcup_{b\in\mathscr{B}\atop b\subset O}b[/math]. Now let [math]x\in O[/math]. Then there exists an [math]\varepsilon \gt 0[/math], such that [math]B_\varepsilon(x)\subset O[/math] and there is a [math]n_0[/math] with [math]d(x_{n_0},x) \lt \frac{\varepsilon}{4}[/math] and thus [math]x\in B_{\frac{\varepsilon}{2}}(x_{n_0})\subset O[/math]. Now we prove the direction [math]\Longleftarrow[/math]. Let therefore [math]\{w_n\}_{n\in\N}[/math] of open sets. Then we can choose a [math]x_n\in w_n[/math] and check that the sequence [math](x_n)_{n\in \N}[/math] is a dense subset, which gives the claim.

Definition (Product topology)

Let [math](X,\mathcal{O}_X)[/math] and [math](Y,\mathcal{O}_Y)[/math] be two topological spaces. The product topology for the product space [math]X\times Y[/math] is defined, with an arbitrary index set [math]I[/math], by the family of open sets

[[math]] \mathcal{O}_{X\times Y}:=\left\{\bigcup_{i\in I}O^X_i\times \mathcal{O}^Y_i\mid O^X\in \mathcal{O}_X,O^Y\in\mathcal{O}_Y\right\}. [[/math]]

Definition (Continuity)

Let [math](X,\mathcal{O}_X)[/math] and [math](Y,\mathcal{O}_Y)[/math] be two topological spaces. A map [math]f:(X,\mathcal{O}_X)\longrightarrow(Y,\mathcal{O}_Y)[/math] is continuous if and only if for all [math]O^Y \in\mathcal{O}_Y[/math], the image of [math]O^Y[/math] under [math]f^{-1}[/math] is open, that is

[[math]] f^{-1}(O^Y)=\{x\in X\mid f(x)\in O^Y\}\in\mathcal{O}_X [[/math]]

Definition (Canonical projection)

Let [math]X[/math] and [math]Y[/math] be two sets. Then we can define the canonical projections to be the surjective maps

[[math]] \begin{align*} \pi_X: X\times Y &\longrightarrow X\\ (x,y)&\longmapsto x \end{align*} [[/math]]

[[math]] \begin{align*} \pi_Y:X\times Y&\longrightarrow Y\\ (x,y)&\longmapsto y \end{align*} [[/math]]

A useful observation is that the product topology is defined in such a way that the canonical projections are continuous, that is

[[math]] \pi_X^{-1}(O^X)=O^X\times Y\in \mathcal{O}_{X\times Y},\pi_Y^{-1}(O^Y)=X\times O^Y\in\mathcal{O}_{X\times Y} [[/math]]

We can also define a metric on two metric spaces [math](X,d)[/math] and [math](Y,\delta)[/math] given by

[[math]] D_p((x,y),(x',y'))=(d^p(x,x')+\delta^p(y,y'))^{\frac{1}{p}}, [[/math]]

for [math]p\geq 1[/math].

Proposition

Let [math](X,\mathcal{O}_X)[/math] and [math](\mathcal{O}_Y)[/math] be two topological spaces. If [math](X,\mathcal{O}_X)[/math] and [math](Y,\mathcal{O}_Y)[/math] have a countable basis of open sets, then [math](X\times Y,\mathcal{O}_{X\times Y})[/math] also has a countable basis of open sets. Moreover, Let [math](X,d)[/math] and [math](Y,\delta)[/math] be two metric spaces. If [math](X,d)[/math] and [math](Y,\delta)[/math] are separable, then [math](X\times Y, D_p)[/math] is also separable.


Show Proof

First, let [math]\mathcal{U}_X=\{U_n\}_{n\in\N}[/math] be a basis of open sets on [math]X[/math] and [math]\mathcal{V}_Y=\{V_n\}_{n\in\N}[/math] a basis of open sets on [math]Y[/math]. Then [math]\{U_n\times V_m\}_{(n,m)\in\N^2}[/math] is a basis of open sets for [math]X\times Y[/math], which proves the first claim. We leave the second claim as an exercise for the reader.

General references

Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].