guide:C4de5f7b12: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\R}{\mathbb{R}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Rbar}{\overline{\mathbb{R}}}
\newcommand{\Bbar}{\overline{\mathcal{B}}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\one}{\mathds{1}}
\newcommand{\0}{\mathcal{O}}
\newcommand{\mat}{\textnormal{Mat}}
\newcommand{\sign}{\textnormal{sign}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\mathds}{\mathbb}</math></div>
{{definitioncard|Transition Kernel|
Let <math>(E,\mathcal{E})</math> and <math>(F,\F)</math> be two measurable spaces. A transition kernel from <math>E</math> to <math>F</math> is a map


<math display="block">
\nu:E\times \F\to [0,1],
</math>
such that
<ul style{{=}}"list-style-type:lower-roman"><li><math>\nu(x,\cdot)</math> is a probability measure on <math>\F</math> for all <math>x\in E</math>.
</li>
<li><math>x\mapsto \nu(x,A)</math> is <math>\mathcal{E}</math>-measurable for all <math>A\in\F</math>.
</li>
</ul>}}
'''Example'''
Let <math>\rho</math> be a <math>\sigma</math>-finite measure on <math>\F</math> and let <math>f:E\times F\to\R_+</math> be a map such that
<math display="block">
\int_F f(x,y)d\rho(y)=1.
</math>
Then
<math display="block">
\nu(x,A)=\int_A f(x,y)d\rho(y)
</math>
is a transition kernel. An example for <math>f</math> would be
<math display="block">
f(x,y)=\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-y)^2}{2\sigma^2}\right).
</math>
{{proofcard|Proposition|prop-1|The following two hold.
<ul style{{=}}"list-style-type:lower-roman"><li>Let <math>h</math> be a nonnegative (or bounded) Borel function on a measurable space <math>(F,\F)</math>. Then
<math display="block">
\varphi(x)=\int_F h(y)\nu(x,dy)
</math>
is a nonnegative (or bounded) measurable function on a measurable space <math>(E,\mathcal{E})</math>.
</li>
<li>If <math>\rho</math> is a probability measure on a measurable space <math>(E,\mathcal{E})</math>, then
<math display="block">
\mu(A)=\int_E\nu(x,A)d\rho(x),
</math>
is a probability measure on a measurable space <math>(F,\F)</math> for all <math>A\in \F</math>.
</li>
</ul>|}}
{{definitioncard|Conditional Distribution|
Let <math>X</math> and <math>Y</math> be two r.v.'s with values in a measurable space <math>(E,\mathcal{E})</math>. The conditional distribution of <math>Y</math> given <math>X</math> is any transition kernel <math>\nu</math> from <math>E</math> to <math>F</math> such that for all nonnegative (or bounded), measurable maps <math>h</math> on a measurable space <math>(F,\F)</math> one has
<math display="block">
\E[h(Y)\mid X]=\int_F h(y)\nu(X,dy)a.s.,
</math>
where the last equality should be understood as a map <math>\phi(X)</math> given by
<math display="block">
\phi:x\mapsto \int_Fh(y)\nu(x,dy).
</math>
}}
{{alert-info |
If <math>\nu</math> is the conditional distribution of <math>Y</math> given <math>X</math>, we get for all <math>A\in F</math>
<math display="block">
\p[Y\in A\mid X]=\nu(X,A)a.s.,
</math>
where we have set <math>h=\one_A</math> in the definition. If <math>\nu'</math> is another such conditional distribution, we get
<math display="block">
\nu(X,A)=\nu'(X,A)a.s.
</math>
This implies that
<math display="block">
\nu(x,A)=\nu'(x,A)d\p_X(x)a.s.
</math>
}}
{{proofcard|Theorem|thm-1|Assume that <math>(E,\mathcal{E})</math> and <math>(F,\F)</math> are two complete, separable, metric, measurable spaces endowed with their Borel <math>\sigma</math>-Algebras. Then the conditional distribution of <math>Y</math> given <math>X</math>, exists and is a.s. unique.|No proof here.}}
==General references==
{{cite arXiv|last=Moshayedi|first=Nima|year=2020|title=Lectures on Probability Theory|eprint=2010.16280|class=math.PR}}

Latest revision as of 21:30, 8 May 2024

[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]
Definition (Transition Kernel)

Let [math](E,\mathcal{E})[/math] and [math](F,\F)[/math] be two measurable spaces. A transition kernel from [math]E[/math] to [math]F[/math] is a map

[[math]] \nu:E\times \F\to [0,1], [[/math]]
such that

  • [math]\nu(x,\cdot)[/math] is a probability measure on [math]\F[/math] for all [math]x\in E[/math].
  • [math]x\mapsto \nu(x,A)[/math] is [math]\mathcal{E}[/math]-measurable for all [math]A\in\F[/math].

Example


Let [math]\rho[/math] be a [math]\sigma[/math]-finite measure on [math]\F[/math] and let [math]f:E\times F\to\R_+[/math] be a map such that

[[math]] \int_F f(x,y)d\rho(y)=1. [[/math]]

Then

[[math]] \nu(x,A)=\int_A f(x,y)d\rho(y) [[/math]]

is a transition kernel. An example for [math]f[/math] would be

[[math]] f(x,y)=\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-y)^2}{2\sigma^2}\right). [[/math]]

Proposition

The following two hold.

  • Let [math]h[/math] be a nonnegative (or bounded) Borel function on a measurable space [math](F,\F)[/math]. Then
    [[math]] \varphi(x)=\int_F h(y)\nu(x,dy) [[/math]]
    is a nonnegative (or bounded) measurable function on a measurable space [math](E,\mathcal{E})[/math].
  • If [math]\rho[/math] is a probability measure on a measurable space [math](E,\mathcal{E})[/math], then
    [[math]] \mu(A)=\int_E\nu(x,A)d\rho(x), [[/math]]
    is a probability measure on a measurable space [math](F,\F)[/math] for all [math]A\in \F[/math].

Definition (Conditional Distribution)

Let [math]X[/math] and [math]Y[/math] be two r.v.'s with values in a measurable space [math](E,\mathcal{E})[/math]. The conditional distribution of [math]Y[/math] given [math]X[/math] is any transition kernel [math]\nu[/math] from [math]E[/math] to [math]F[/math] such that for all nonnegative (or bounded), measurable maps [math]h[/math] on a measurable space [math](F,\F)[/math] one has

[[math]] \E[h(Y)\mid X]=\int_F h(y)\nu(X,dy)a.s., [[/math]]
where the last equality should be understood as a map [math]\phi(X)[/math] given by

[[math]] \phi:x\mapsto \int_Fh(y)\nu(x,dy). [[/math]]

If [math]\nu[/math] is the conditional distribution of [math]Y[/math] given [math]X[/math], we get for all [math]A\in F[/math]

[[math]] \p[Y\in A\mid X]=\nu(X,A)a.s., [[/math]]
where we have set [math]h=\one_A[/math] in the definition. If [math]\nu'[/math] is another such conditional distribution, we get

[[math]] \nu(X,A)=\nu'(X,A)a.s. [[/math]]
This implies that

[[math]] \nu(x,A)=\nu'(x,A)d\p_X(x)a.s. [[/math]]

Theorem

Assume that [math](E,\mathcal{E})[/math] and [math](F,\F)[/math] are two complete, separable, metric, measurable spaces endowed with their Borel [math]\sigma[/math]-Algebras. Then the conditional distribution of [math]Y[/math] given [math]X[/math], exists and is a.s. unique.

Show Proof

No proof here.

General references

Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].