guide:20cb216cb3: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 29: | Line 29: | ||
}} | }} | ||
| | |For the left right implication, we note that for all <math>m\geq n</math> and for all <math>A\in\F_n</math> we have | ||
For the left right implication, we note that for all <math>m\geq n</math> and for all <math>A\in\F_n</math> we have | |||
<math display="block"> | <math display="block"> | ||
Line 126: | Line 124: | ||
X_\infty=\E[Z\mid \F_\infty]. | X_\infty=\E[Z\mid \F_\infty]. | ||
</math>}} | </math>}} | ||
{{proofcard|Theorem (<math>L^p</math> martingale convergence theorem)|thm3|Let <math>(\Omega,\F,(\F_n)_{n\geq0},\p)</math> be a filtered probability space. Let <math>(X_n)_{n\geq 0}</math> be a martingale. Assume that there exists <math>p\geq 1</math> such that | {{proofcard|Theorem (<math>L^p</math> martingale convergence theorem)|thm3|Let <math>(\Omega,\F,(\F_n)_{n\geq0},\p)</math> be a filtered probability space. Let <math>(X_n)_{n\geq 0}</math> be a martingale. Assume that there exists <math>p\geq 1</math> such that | ||
Line 165: | Line 161: | ||
</ul> | </ul> | ||
}} | }} | ||
| | |We first note that since <math>\sup_{n\geq 0}\E[\vert X_n\vert^p] < \infty</math>, we also have that | ||
We first note that since <math>\sup_{n\geq 0}\E[\vert X_n\vert^p] < \infty</math>, we also have that | |||
<math display="block"> | <math display="block"> |
Latest revision as of 22:45, 8 May 2024
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a martingale. Then [math](X_n)_{n\geq0}[/math] converges a.s. to a r.v. [math]X_\infty\in L^1(\Omega,\F_\infty,(\F_n)_{n\geq0},\p)[/math] if and only if there exists a r.v. [math]Z\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math] such that [math]X_n=\E[Z\mid \F_n][/math] for all [math]n\geq0[/math], where [math]\F_\infty=\sigma\left(\bigcup_{n\geq 0}\F_n\right)[/math].
We shall see that one can always represent [math]X_n[/math] as
For the left right implication, we note that for all [math]m\geq n[/math] and for all [math]A\in\F_n[/math] we have
For the left implication, we see that if [math]X_n=\E[Z\mid \F_n][/math], then
Hence we know now that [math]X_n\xrightarrow{n\to\infty_ a.s.}X_\infty[/math]. It remains to show that
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]Z\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math]. The unique martingale [math]X_n=\E[Z\mid \F_n][/math] converges a.s. and in [math]L^1[/math] to [math]X_\infty=\E[Z\mid \F_\infty][/math], where [math]\F_\infty=\sigma\left(\bigcup_{n\geq 0}\F_n\right)[/math].
First, we note that [math]X_\infty[/math] is [math]\F_\infty[/math]-measurable. Now choose [math]A\in\F_n[/math]. Then
which implies that
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a martingale. Assume that there exists [math]p\geq 1[/math] such that
and
Let us summarize what we have seen so far.
- If [math](X_n)_{n\geq 0}[/math] is bounded in [math]L^1[/math], we get [math]X_n\xrightarrow{n\to\infty\atop a.s.}X_\infty\in L^1[/math].
- [math]X_n\xrightarrow{n\to\infty\atop \text{$a.s.$ and $L^1$}}X_\infty[/math] if and only if [math]X_n=\E[X_\infty\mid \F_n][/math].
- If [math](X_n)_{n\geq 0}[/math] is bounded in [math]L^p[/math] with [math]p\geq 1[/math], then [math]X_n\xrightarrow{n\to\infty\atop\text{$a.s.$ and $L^p$}}X_\infty[/math].
We first note that since [math]\sup_{n\geq 0}\E[\vert X_n\vert^p] \lt \infty[/math], we also have that
Finally, we note that [math](\vert X_n\vert^p)_{n\geq 0}[/math] is a positive submartingale. Hence we know that
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].