guide:090050c501: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"> | |||
<math> | |||
\newcommand{\DS}{\displaystyle} | |||
\newcommand{\intbeta}{\lfloor \beta \rfloor} | |||
\newcommand{\cA}{\mathcal{A}} | |||
\newcommand{\cB}{\mathcal{B}} | |||
\newcommand{\cC}{\mathcal{C}} | |||
\newcommand{\cD}{\mathcal{D}} | |||
\newcommand{\cE}{\mathcal{E}} | |||
\newcommand{\cF}{\mathcal{F}} | |||
\newcommand{\cG}{\mathcal{G}} | |||
\newcommand{\cH}{\mathcal{H}} | |||
\newcommand{\cI}{\mathcal{I}} | |||
\newcommand{\cJ}{\mathcal{J}} | |||
\newcommand{\cK}{\mathcal{K}} | |||
\newcommand{\cL}{\mathcal{L}} | |||
\newcommand{\cM}{\mathcal{M}} | |||
\newcommand{\cN}{\mathcal{N}} | |||
\newcommand{\cO}{\mathcal{O}} | |||
\newcommand{\cP}{\mathcal{P}} | |||
\newcommand{\cQ}{\mathcal{Q}} | |||
\newcommand{\cS}{\mathcal{S}} | |||
\newcommand{\cT}{\mathcal{T}} | |||
\newcommand{\cU}{\mathcal{U}} | |||
\newcommand{\cV}{\mathcal{V}} | |||
\newcommand{\cX}{\mathcal{X}} | |||
\newcommand{\cY}{\mathcal{Y}} | |||
\newcommand{\cZ}{\mathcal{Z}} | |||
\newcommand{\sg}{\mathsf{subG}} | |||
\newcommand{\subE}{\mathsf{subE}} | |||
\newcommand{\bA}{\mathbf{A}} | |||
\newcommand{\bB}{\mathbf{B}} | |||
\newcommand{\bC}{\mathbf{C}} | |||
\newcommand{\bD}{\mathbf{D}} | |||
\newcommand{\bE}{\mathbf{E}} | |||
\newcommand{\bF}{\mathbf{F}} | |||
\newcommand{\bG}{\mathbf{G}} | |||
\newcommand{\bH}{\mathbf{H}} | |||
\newcommand{\bI}{\mathbf{I}} | |||
\newcommand{\bJ}{\mathbf{J}} | |||
\newcommand{\bK}{\mathbf{K}} | |||
\newcommand{\bM}{\mathbf{M}} | |||
\newcommand{\bN}{\mathbf{N}} | |||
\newcommand{\bO}{\mathbf{O}} | |||
\newcommand{\bP}{\mathbf{P}} | |||
\newcommand{\bp}{\mathbf{p}} | |||
\newcommand{\bQ}{\mathbf{Q}} | |||
\newcommand{\bS}{\mathbf{S}} | |||
\newcommand{\bT}{\mathbf{T}} | |||
\newcommand{\bU}{\mathbf{U}} | |||
\newcommand{\bV}{\mathbf{V}} | |||
\newcommand{\bX}{\mathbf{X}} | |||
\newcommand{\bY}{\mathbf{Y}} | |||
\newcommand{\bZ}{\mathbf{Z}} | |||
\newcommand{\bflambda}{\boldsymbol{\lambda}} | |||
\newcommand{\bftheta}{\boldsymbol{\theta}} | |||
\newcommand{\bfg}{\boldsymbol{g}} | |||
\newcommand{\bfy}{\boldsymbol{y}} | |||
\def\thetaphat{\hat{\bftheta}_\bp} | |||
\def\bflam{\boldsymbol{\lambda}} | |||
\def\Lam{\Lambda} | |||
\def\lam{\lambda} | |||
\def\bfpi{\boldsymbol{\pi}} | |||
\def\bfz{\boldsymbol{z}} | |||
\def\bfw{\boldsymbol{w}} | |||
\def\bfeta{\boldsymbol{\eta}} | |||
\newcommand{\R}{\mathrm{ I}\kern-0.18em\mathrm{ R}} | |||
\newcommand{\h}{\mathrm{ I}\kern-0.18em\mathrm{ H}} | |||
\newcommand{\K}{\mathrm{ I}\kern-0.18em\mathrm{ K}} | |||
\newcommand{\p}{\mathrm{ I}\kern-0.18em\mathrm{ P}} | |||
\newcommand{\E}{\mathrm{ I}\kern-0.18em\mathrm{ E}} | |||
%\newcommand{\Z}{\mathrm{ Z}\kern-0.26em\mathrm{ Z}} | |||
\newcommand{\1}{\mathrm{ 1}\kern-0.24em\mathrm{ I}} | |||
\newcommand{\N}{\mathrm{ I}\kern-0.18em\mathrm{ N}} | |||
\newcommand{\field}[1]{\mathbb{#1}} | |||
\newcommand{\q}{\field{Q}} | |||
\newcommand{\Z}{\field{Z}} | |||
\newcommand{\X}{\field{X}} | |||
\newcommand{\Y}{\field{Y}} | |||
\newcommand{\bbS}{\field{S}} | |||
\newcommand{\n}{\mathcal{N}} | |||
\newcommand{\x}{\mathcal{X}} | |||
\newcommand{\pp}{{\sf p}} | |||
\newcommand{\hh}{{\sf h}} | |||
\newcommand{\ff}{{\sf f}} | |||
\newcommand{\Bern}{\mathsf{Ber}} | |||
\newcommand{\Bin}{\mathsf{Bin}} | |||
\newcommand{\Lap}{\mathsf{Lap}} | |||
\newcommand{\tr}{\mathsf{Tr}} | |||
\newcommand{\phin}{\varphi_n} | |||
\newcommand{\phinb}{\overline \varphi_n(t)} | |||
\newcommand{\pn}{\p_{\kern-0.25em n}} | |||
\newcommand{\pnm}{\p_{\kern-0.25em n,m}} | |||
\newcommand{\psubm}{\p_{\kern-0.25em m}} | |||
\newcommand{\psubp}{\p_{\kern-0.25em p}} | |||
\newcommand{\cfi}{\cF_{\kern-0.25em \infty}} | |||
\newcommand{\e}{\mathrm{e}} | |||
\newcommand{\ic}{\mathrm{i}} | |||
\newcommand{\Leb}{\mathrm{Leb}_d} | |||
\newcommand{\Var}{\mathrm{Var}} | |||
\newcommand{\ddelta}{d_{\symdiffsmall}} | |||
\newcommand{\dsubh}{d_H} | |||
\newcommand{\indep}{\perp\kern-0.95em{\perp}} | |||
\newcommand{\supp}{\mathop{\mathrm{supp}}} | |||
\newcommand{\rank}{\mathop{\mathrm{rank}}} | |||
\newcommand{\vol}{\mathop{\mathrm{vol}}} | |||
\newcommand{\conv}{\mathop{\mathrm{conv}}} | |||
\newcommand{\card}{\mathop{\mathrm{card}}} | |||
\newcommand{\argmin}{\mathop{\mathrm{argmin}}} | |||
\newcommand{\argmax}{\mathop{\mathrm{argmax}}} | |||
\newcommand{\ud}{\mathrm{d}} | |||
\newcommand{\var}{\mathrm{var}} | |||
\newcommand{\re}{\mathrm{Re}} | |||
\newcommand{\MSE}{\mathsf{MSE}} | |||
\newcommand{\im}{\mathrm{Im}} | |||
\newcommand{\epr}{\hfill\hbox{\hskip 4pt\vrule width 5pt | |||
height 6pt depth 1.5pt}\vspace{0.5cm}\par} | |||
\newcommand{\bi}[1]{^{(#1)}} | |||
\newcommand{\eps}{\varepsilon} | |||
\newcommand{\Deq}{\stackrel{\mathcal{D}}{=}} | |||
\newcommand{\ubar}{\underbar} | |||
\newcommand{\Kbeta}{K_{\hspace{-0.3mm} \beta}} | |||
\newcommand{\crzero}[1]{\overset{r_0}{\underset{#1}{\longleftrightarrow}}} | |||
\newcommand{\hint}[1]{\texttt{[Hint:#1]}} | |||
\newcommand{\vp}{\vspace{.25cm}} | |||
\newcommand{\vm}{\vspace{.5cm}} | |||
\newcommand{\vg}{\vspace{1cm}} | |||
\newcommand{\vgneg}{\vspace{-1cm}} | |||
\newcommand{\vneg}{\vspace{-.5cm}} | |||
\newcommand{\vpneg}{\vspace{-.25cm}} | |||
\newcommand{\tp}{\ptsize{10}} | |||
\newcommand{\douzp}{\ptsize{12}} | |||
\newcommand{\np}{\ptsize{9}} | |||
\newcommand{\hp}{\ptsize{8}} | |||
\newcommand{\red}{\color{red}} | |||
\newcommand{\ndpr}[1]{{\textsf{\red[#1]}}} | |||
\newcommand\iid{i.i.d\@ifnextchar.{}{.\@\xspace} } | |||
\newcommand\MoveEqLeft[1][2]{\kern #1em & \kern -#1em} | |||
\newcommand{\leadeq}[2][4]{\MoveEqLeft[#1] #2 \nonumber} | |||
\newcommand{\leadeqnum}[2][4]{\MoveEqLeft[#1] #2} | |||
\newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} | |||
\def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} | |||
\newcommand{\MIT}[1]{{\color{MITred} #1}} | |||
\newcommand{\dHyp}{\{-1,1\}^d} | |||
\newcommand{\thetahard}{\hat \theta^{hrd}} | |||
\newcommand{\thetasoft}{\hat \theta^{sft}} | |||
\newcommand{\thetabic}{\hat \theta^{bic}} | |||
\newcommand{\thetalasso}{\hat \theta^{\cL}} | |||
\newcommand{\thetaslope}{\hat \theta^{\cS}} | |||
\newcommand{\thetahard}{\hat \theta^{hrd}} | |||
\newcommand{\thetasoft}{\hat \theta^{sft}} | |||
\newcommand{\thetabic}{\hat \theta^{bic}} | |||
\newcommand{\thetalasso}{\hat \theta^{\cL}} | |||
\newcommand{\thetaslope}{\hat \theta^{\cS}} | |||
\newcommand{\thetals}{\hat \theta^{ls}} | |||
\newcommand{\thetalsm}{\tilde \theta^{ls_X}} | |||
\newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} | |||
\newcommand{\thetalsK}{\hat \theta^{ls}_K} | |||
\newcommand{\muls}{\hat \mu^{ls}} | |||
</math> | |||
</div> | |||
\label{chap:GSM} | |||
\newcommand{\thetahard}{\hat \theta^{\textsc{hrd}}} | |||
\newcommand{\thetasoft}{\hat \theta^{\textsc{sft}}} | |||
\newcommand{\thetabic}{\hat \theta^{\textsc{bic}}} | |||
\newcommand{\thetalasso}{\hat \theta^{\cL}} | |||
\newcommand{\thetaslope}{\hat \theta^{\cS}} | |||
\newcommand{\thetals}{\hat \theta^{\textsc{ls}}} | |||
\newcommand{\thetalsm}{\tilde \theta^{\textsc{ls}}_X} | |||
\newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} | |||
\newcommand{\thetalsK}{\hat \theta^{\textsc{ls}}_K} | |||
\newcommand{\muls}{\hat \mu^{\textsc{ls}}} | |||
In this chapter, we consider the following regression model: | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:regmod} | |||
Y_i=f(X_i)+\eps_i,\quad i=1, \ldots, n\,, | |||
\end{equation} | |||
</math> | |||
where <math>\eps=(\eps_1, \ldots, \eps_n)^\top </math> is sub-Gaussian with variance proxy <math>\sigma^2</math> and such that <math>\E[\eps]=0</math>. Our goal is to estimate the function <math>f</math> under a linear assumption. Namely, we assume that <math>x \in \R^d</math> and <math>f(x)=x^\top\theta^*</math> for some unknown <math>\theta^* \in \R^d</math>. | |||
==<span id="SEC:fixed_Vs_random"></span>Fixed design linear regression== | |||
Depending on the nature of the ''design'' points <math>X_1, \ldots, X_n</math>, we will favor a different measure of risk. In particular, we will focus either on ''fixed'' or ''random'' design. | |||
===Random design=== | |||
The case of random design corresponds to the statistical learning setup. Let <math>(X_1,Y_1), \ldots, (X_{n+1}, Y_{n+1})</math> be <math>n+1</math> \iid random couples. Given the pairs <math>(X_1,Y_1), \ldots, (X_{n}, Y_{n})</math>, the goal is construct a function <math>\hat f_n</math> such that <math>\hat f_n(X_{n+1})</math> is a good predictor of <math>Y_{n+1}</math>. Note that when <math>\hat f_n</math> is constructed, <math>X_{n+1}</math> is still unknown and we have to account for what value it is likely to take. | |||
Consider the following example from~<ref name="HasTibFri01">{{cite journal|last1=Wright|first1=John|last2=Yang|first2=Allen Y.|last3=Ganesh|first3=Arvind|last4=Sastry|first4=S. Shankar|last5=Ma|first5=Yi|journal=IEEE Trans. Pattern Anal. Mach. Intell.|year=2009|title=Robust Face Recognition via Sparse Representation|volume=31|number=2|publisher=IEEE Computer Society}}</ref>{{rp|at=Section~3.2}}. The response variable <math>Y</math> is the log-volume of a cancerous tumor, and the goal is to predict it based on <math>X \in \R^6</math>, a collection of variables that are easier to measure (age of patient, log-weight of prostate, \ldots). Here the goal is clearly to construct <math>f</math> for ''prediction'' purposes. Indeed, we want to find an automatic mechanism that outputs a good prediction of the log-weight of the tumor given certain inputs for a new (unseen) patient. | |||
A natural measure of performance here is the <math>L_2</math>-risk employed in the introduction: | |||
<math display="block"> | |||
R(\hat f_n)=\E[Y_{n+1}-\hat f_n(X_{n+1})]^2=\E[Y_{n+1}-f(X_{n+1})]^2+\|\hat f_n -f\|^2_{L^2(P_X)}\,, | |||
</math> | |||
where <math>P_X</math> denotes the marginal distribution of <math>X_{n+1}</math>. It measures how good the prediction of <math>Y_{n+1}</math> is in average over realizations of <math>X_{n+1}</math>. In particular, it does not put much emphasis on values of <math>X_{n+1}</math> that are not very likely to occur. | |||
Note that if the <math>\eps_i</math> are random variables with variance <math>\sigma^2</math>, then one simply has <math>R(\hat f_n)=\sigma^2+\|\hat f_n -f\|^2_{L^2(P_X)}</math>. Therefore, for random design, we will focus on the squared <math>L_2</math> norm <math>\|\hat f_n -f\|^2_{L^2(P_X)}</math> as a measure of accuracy. It measures how close <math>\hat f_n</math> is to the unknown <math>f</math> ''in average'' over realizations of <math>X_{n+1}</math>. | |||
===Fixed design=== | |||
In fixed design, the points (or vectors) <math>X_1, \ldots, X_n</math> are ''deterministic''. To emphasize this fact, we use lowercase letters <math>x_1, \ldots, x_n</math> to denote fixed design. Of course, we can always think of them as realizations of a random variable but the distinction between fixed and random design is deeper and significantly affects our measure of performance. Indeed, recall that for random design, we look at the performance ''in average'' over realizations of <math>X_{n+1}</math>. Here, there is no such thing as a marginal distribution of <math>X_{n+1}</math>. | |||
Rather, since the design points <math>x_1, \ldots, x_n</math> are considered deterministic, our goal is to estimate <math>f</math> ''only'' at these points. This problem is sometimes called ''denoising'' since our goal is to recover <math>f(x_1), \ldots, f(x_n)</math> given noisy observations of these values. | |||
In many instances, fixed designs exhibit particular structures. | |||
A typical example is the ''regular design'' on <math>[0,1]</math>, given by <math>x_i=i/n</math>, <math>i=1, \ldots, n</math>. Interpolation between these points is possible under smoothness assumptions. | |||
Note that in fixed design, we observe <math>\mu^*+\eps</math>, where <math>\mu^*=\big(f(x_1), \ldots, f(x_n)\big)^\top \in \R^n</math> and <math>\eps=(\eps_1, \ldots, \eps_n)^\top \in \R^n</math> is sub-Gaussian with variance proxy <math>\sigma^2</math>. Instead of a functional estimation problem, it is often simpler to view this problem as a vector problem in <math>\R^n</math>. This point of view will allow us to leverage the Euclidean geometry of <math>\R^n</math>. | |||
In the case of fixed design, we will focus on the ''Mean Squared Error'' (MSE) as a measure of performance. It is defined by | |||
<math display="block"> | |||
\MSE(\hat f_n)=\frac{1}{n}\sum_{i=1}^n \big(\hat f_n(x_i)-f(x_i)\big)^2\,. | |||
</math> | |||
Equivalently, if we view our problem as a vector problem, it is defined by | |||
<math display="block"> | |||
\MSE(\hat \mu)=\frac{1}{n}\sum_{i=1}^n \big(\hat \mu_i -\mu^*_i\big)^2=\frac{1}{n} |\hat \mu -\mu^*|_2^2\,. | |||
</math> | |||
Often, the design vectors <math>x_1, \ldots, x_n \in \R^d</math> are stored in an <math>n\times d</math> design matrix <math>\X</math>, whose <math>j</math>th row is given by <math>x_j^\top</math>. With this notation, the linear regression model can be written as | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:regmod_matrix} | |||
Y = \X \theta^* +\eps\,, | |||
\end{equation} | |||
</math> | |||
where <math>Y=(Y_1, \ldots, Y_n)^\top</math> and <math>\eps=(\eps_1, \ldots, \eps_n)^\top</math>. Moreover, | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:mse_matrix} | |||
\MSE(\X\hat \theta)=\frac{1}{n} |\X(\hat \theta -\theta^*)|_2^2=(\hat \theta -\theta^*)^\top \frac{\X^\top \X}{n} (\hat \theta -\theta^*)\,. | |||
\end{equation} | |||
</math> | |||
A natural example of fixed design regression is image denoising. Assume that <math>\mu^*_i, i \in 1, \ldots, n</math> is the grayscale value of pixel <math>i</math> of an image. We do not get to observe the image <math>\mu^*</math> but rather a noisy version of it <math>Y=\mu^*+\eps</math>. Given a library of <math>d</math> images <math>\{x_1, \ldots, x_d\}, x_j \in \R^{n}</math>, our goal is to recover the original image <math>\mu^*</math> using linear combinations of the images <math>x_1, \ldots, x_d</math>. This can be done fairly accurately (see Figure~[[#FIG:number6 |Linear Regression Model]]). | |||
<div id="FIG:number6"> | |||
<div class="d-flex justify-content-center flex-column flex-md-row"> | |||
[[File:guide_e2965_6true.png|400px]] | |||
[[File:|400px]] | |||
</div><div class="d-flex justify-content-center flex-column flex-md-row"> | |||
[[File:guide_e2965_spa_10.png|400px]] | |||
</div> | |||
</div><div class="thumbinner"> | |||
<div class="thumbcaption"> | |||
Reconstruction of the digit ‘`6": Original (left), Noisy (middle) and Reconstruction (right). Here <math>n=16\times 16=256</math> pixels. Source~<ref name="RigTsy11">{{cite journal|last1=Rigollet|first1=Philippe|last2=Tsybakov|first2=Alex|last3=re|journal=Ann. Statist.|year=2011|title=Exponential screening and optimal rates of sparse estimation|volume=39|number=2}}</ref>. | |||
</div> | |||
</div> | |||
As we will see in Remark~[[#rem:lam_min |Linear Regression Model]], properly choosing the design also ensures that if <math>\MSE(\hat f)</math> is small for some linear estimator <math>\hat f(x)=x^\top \hat \theta</math>, then <math>|\hat \theta -\theta^*|_2^2</math> is also small. | |||
\begin{center} | |||
\MIT{\framebox{'''In this chapter we only consider the fixed design case.'''}} | |||
\end{center} | |||
==Least squares estimators== | |||
Throughout this section, we consider the regression model~\eqref{EQ:regmod_matrix} with fixed design. | |||
===Unconstrained least squares estimator=== | |||
Define the (unconstrained) ’'least squares estimator'' <math>\thetals</math> to be any vector such that | |||
<math display="block"> | |||
\thetals \in \argmin_{\theta \in \R^d}|Y-\X\theta|_2^2\,. | |||
</math> | |||
Note that we are interested in estimating <math>\X\theta^*</math> and not <math>\theta^*</math> itself, so by extension, we also call <math>\muls=\X\thetals</math> least squares estimator. Observe that <math>\muls</math> is the projection of <math>Y</math> onto the column span of <math>\X</math>. | |||
It is not hard to see that least squares estimators of <math>\theta^*</math> and <math>\mu^*=\X\theta^*</math> are maximum likelihood estimators when <math>\eps \sim \cN(0,\sigma^2I_n)</math>. | |||
{{proofcard|Proposition|prop-1|The least squares estimator <math>\muls=\X\thetals \in \R^n</math> satisfies | |||
<math display="block"> | |||
\X^\top \muls=\X^\top Y\,. | |||
</math> | |||
Moreover, <math>\thetals</math> can be chosen to be | |||
<math display="block"> | |||
\thetals = (\X^\top \X)^\dagger\X^\top Y\,, | |||
</math> | |||
where <math>(\X^\top \X)^\dagger</math> denotes the Moore-Penrose pseudoinverse of <math>\X^\top \X</math>. | |||
|The function <math>\theta \mapsto |Y-\X\theta|_2^2</math> is convex so any of its minima satisfies | |||
<math display="block"> | |||
\nabla_\theta |Y-\X\theta|_2^2=0, | |||
</math> | |||
where <math>\nabla_\theta</math> is the gradient operator. Using matrix calculus, we find | |||
<math display="block"> | |||
\nabla_\theta |Y-\X\theta|_2^2=\nabla_\theta\big\{|Y|_2^2 -2Y^\top \X \theta + \theta^\top \X^\top \X\theta\big\}=-2(Y^\top\X-\theta^\top \X^\top \X)^\top\,. | |||
</math> | |||
Therefore, solving <math>\nabla_\theta |Y-\X\theta|_2^2=0</math> yields | |||
<math display="block"> | |||
\X^\top\X \theta=\X^\top Y\,. | |||
</math> | |||
It concludes the proof of the first statement. The second statement follows from the definition of the Moore-Penrose pseudoinverse.}} | |||
We are now going to prove our first result on the finite sample performance of the least squares estimator for fixed design. | |||
{{proofcard|Theorem|TH:lsOI|Assume that the linear model~\eqref{EQ:regmod_matrix} holds where <math>\eps\sim \sg_n(\sigma^2)</math>. Then the least squares estimator <math>\thetals</math> satisfies | |||
<math display="block"> | |||
\E\big[\MSE(\X\thetals)\big]=\frac{1}{n}\E|\X\thetals - \X\theta^*|_2^2 \lesssim \sigma^2 \frac{r}{n}\,, | |||
</math> | |||
where <math>r=\rank(\X^\top \X)</math>. Moreover, for any <math>\delta > 0</math>, with probability at least <math>1-\delta</math>, it holds | |||
<math display="block"> | |||
\MSE(\X\thetals)\lesssim \sigma^2 \frac{r+\log(1/\delta)}{n}\,. | |||
</math> | |||
|Note that by definition | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:fund_ineq_ls} | |||
|Y-\X\thetals|_2^2 \le |Y-\X\theta^*|_2^2=|\eps|^2_2\,. | |||
\end{equation} | |||
</math> | |||
Moreover, | |||
<math display="block"> | |||
|Y-\X\thetals|_2^2 =|\X\theta^*+\eps-\X\thetals|_2^2= |\X\thetals-\X\theta^*|_2^2-2\eps^\top\X(\thetals -\theta^*) + |\eps|_2^2\,. | |||
</math> | |||
Therefore, we get | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:bound_ls_1} | |||
|\X\thetals-\X\theta^*|_2^2\le 2\eps^\top\X(\thetals - \theta^*)=2|\X\thetals-\X\theta^*|_2\frac{\eps^\top\X(\thetals - \theta^*)}{|\X(\thetals - \theta^*)|_2} | |||
\end{equation} | |||
</math> | |||
Note that it is difficult to control | |||
<math display="block"> | |||
\frac{\eps^\top\X(\thetals - \theta^*)}{|\X(\thetals - \theta^*)|_2} | |||
</math> | |||
as <math>\thetals</math> depends on <math>\eps</math> and the dependence structure of this term may be complicated. To remove this dependency, a traditional technique is to ‘`sup-out" <math>\thetals</math>. This is typically where maximal inequalities are needed. Here we have to be a bit careful. | |||
Let <math>\Phi=[\phi_1, \ldots, \phi_r] \in \R^{n \times r}</math> be an orthonormal basis of the column span of <math>\X</math>. In particular, there exists <math>\nu \in \R^r</math> such that <math>\X(\thetals - \theta^*)=\Phi \nu</math>. It yields | |||
<math display="block"> | |||
\frac{\eps^\top\X(\thetals - \theta^*)}{|\X(\thetals - \theta^*)|_2}=\frac{\eps^\top \Phi \nu}{|\Phi\nu|_2} =\frac{\eps^\top \Phi \nu}{|\nu|_2}= | |||
\tilde \eps^\top \frac{\nu}{|\nu|_2}\le \sup_{u \in \cB_2}\tilde \eps^\top u\,, | |||
</math> | |||
where <math>\cB_2</math> is the unit ball of <math>\R^r</math> and <math>\tilde \eps=\Phi^\top\eps</math>. Thus | |||
<math display="block"> | |||
|\X\thetals-\X\theta^*|_2^2 \le 4\sup_{u \in \cB_2}(\tilde \eps^\top u)^2\,, | |||
</math> | |||
Next, let <math> u \in \cS^{r-1} </math> and note that <math>|\Phi u|_2^2=u^\top \Phi^\top \Phi u=u^\top u=1</math>, so that for any <math>s \in \R</math>, we have | |||
<math display="block"> | |||
\E[e^{s \tilde \eps^\top u}]=\E[e^{s \eps^\top \Phi u}]\le \e^{\frac{s^2\sigma^2}{2}}\,. | |||
</math> | |||
Therefore, <math>\tilde \eps\sim \sg_r(\sigma^2)</math>. | |||
To conclude the bound in expectation, observe that Lemma~[[guide:0251dfcdad#LEM:subgauss_moments |Sub-Gaussian Random Variables]] yields | |||
<math display="block"> | |||
4\E\big[\sup_{u \in \cB_2}(\tilde \eps^\top u )^2\big]=4\sum_{i=1}^r \E[\tilde \eps_i^2]\le 16\sigma^2r\,. | |||
</math> | |||
Moreover, with probability <math>1-\delta</math>, it follows from the last step in the proof<ref group="Notes" >we could use Theorem~[[guide:0251dfcdad#TH:supell2 |Sub-Gaussian Random Variables]] directly here but at the cost of a factor 2 in the constant.</ref> of Theorem~[[guide:0251dfcdad#TH:supell2 |Sub-Gaussian Random Variables]] that | |||
<math display="block"> | |||
\sup_{u \in \cB_2}(\tilde \eps^\top u)^2 \le 8\log(6)\sigma^2 r + 8\sigma^2\log(1/\delta)\,. | |||
</math>}} | |||
{{alert-info | | |||
\label{rem:lam_min} | |||
If <math>d \le n</math> and <math>B:=\frac{\X^\top \X}{n}</math> has rank <math>d</math>, then we have | |||
<math display="block"> | |||
|\thetals -\theta^*|_2^2 \le \frac{\MSE(\X\thetals)}{\lambda_{\mathrm{min}} (B)}\,, | |||
</math> | |||
and we can use Theorem~[[#TH:lsOI |Linear Regression Model]] to bound <math>|\thetals -\theta^*|_2^2</math> directly. | |||
By contrast, in the high-dimensional case, we will need more structural assumptions to come to a similar conclusion. | |||
}} | |||
===Constrained least squares estimator=== | |||
Let <math>K\subset \R^d</math> be a symmetric convex set. If we know ’'a priori'' that <math>\theta^* \in K</math>, we may prefer a ''constrained least squares'' estimator <math>\thetalsK</math> defined by | |||
<math display="block"> | |||
\thetalsK \in \argmin_{\theta \in K} |Y-\X\theta|_2^2\,. | |||
</math> | |||
The fundamental inequality~\eqref{EQ:fund_ineq_ls} would still hold and the bounds on the MSE may be smaller. Indeed, ~\eqref{EQ:bound_ls_1} can be replaced by | |||
<math display="block"> | |||
|\X\thetalsK-\X\theta^*|_2^2\le 2\eps^\top\X(\thetalsK - \theta^*)\le 2\sup_{\theta \in K-K}(\eps^\top\X\theta)\,, | |||
</math> | |||
where <math>K-K=\{x-y\,:\, x, y \in K\}</math>. It is easy to see that if <math>K</math> is symmetric (<math>x \in K \Leftrightarrow -x \in K</math>) and convex, then <math>K-K=2K</math> so that | |||
<math display="block"> | |||
2\sup_{\theta \in K-K}(\eps^\top\X\theta)=4\sup_{v \in \X K}(\eps^\top v) | |||
</math> | |||
where <math>\X K=\{\X\theta\,:\, \theta \in K\} \subset \R^n</math>. This is a measure of the size (width) of <math>\X K</math>. If <math>\eps\sim \cN(0,I_d)</math>, the expected value of the above supremum is actually called ''Gaussian width'' of <math>\X K</math>. While <math>\eps</math> is not Gaussian but sub-Gaussian here, similar properties will still hold. | |||
====<math>\ell_1</math> constrained least squares==== | |||
Assume here that <math>K=\cB_1</math> is the unit <math>\ell_1</math> ball of <math>\R^d</math>. Recall that it is defined by | |||
<math display="block"> | |||
\cB_1=\Big\{x \in \R^d\,:\, \sum_{i=1}^d|x_i|\le 1\big\}\,, | |||
</math> | |||
and it has exactly <math>2d</math> vertices <math>\cV=\{e_1, -e_1, \ldots, e_d, -e_d\}</math>, where <math>e_j</math> is the <math>j</math>-th vector of the canonical basis of <math>\R^d</math> and is defined by | |||
<math display="block"> | |||
e_j=(0, \ldots, 0,\underbrace{1}_{j\text{th position}},0, \ldots, 0)^\top\,. | |||
</math> | |||
It implies that the set <math>\X K=\{\X\theta, \theta \in K\} \subset \R^n</math> is also a polytope with at most <math>2d</math> vertices that are in the set <math>\X\cV=\{\X_1, -\X_1, \ldots, \X_d, -\X_d\}</math> where <math>\X_j</math> is the <math>j</math>-th column of <math>\X</math>. Indeed, <math>\X K</math> is obtained by rescaling and embedding (resp. projecting) the polytope <math>K</math> when <math>d \le n</math> (resp., <math>d \ge n</math>). Note that some columns of <math>\X</math> might not be vertices of <math>\X K</math> so that <math>\X \cV</math> might be a strict superset of the set of vertices of <math>\X K</math>. | |||
{{proofcard|Theorem|TH:ell1const|Let <math>K=\cB_1</math> be the unit <math>\ell_1</math> ball of <math>\R^d, d\ge 2</math> and assume that <math>\theta^* \in \cB_1</math>. Moreover, assume the conditions of Theorem~[[#TH:lsOI |Linear Regression Model]] and that the columns of <math>\X</math> are normalized in such a way that <math>\max_j|\X_j|_2\le \sqrt{n}</math>. Then the constrained least squares estimator <math>\thetals_{\cB_1}</math> satisfies | |||
<math display="block"> | |||
\E\big[\MSE(\X\thetals_{\cB_1})\big]=\frac{1}{n}\E|\X\thetals_{\cB_1} - \X\theta^*|_2^2 \lesssim \sigma\sqrt{ \frac{\log d}{n}}\,, | |||
</math> | |||
Moreover, for any <math>\delta > 0</math>, with probability <math>1-\delta</math>, it holds | |||
<math display="block"> | |||
\MSE(\X\thetals_{\cB_1})\lesssim \sigma \sqrt{\frac{\log (d/\delta)}{n}}\,. | |||
</math> | |||
|From the considerations preceding the theorem, we get that | |||
<math display="block"> | |||
|\X\thetals_{\cB_1}-\X\theta^*|_2^2\le4\sup_{v \in \X K}(\eps^\top v). | |||
</math> | |||
Observe now that since <math>\eps\sim \sg_n(\sigma^2)</math>, for any column <math>\X_j</math> such that <math>|\X_j|_2\le \sqrt{n}</math>, the random variable <math>\eps^\top \X_j\sim \sg(n\sigma^2)</math>. Therefore, applying Theorem~[[guide:0251dfcdad#TH:polytope |Sub-Gaussian Random Variables]], we get the bound on <math>\E\big[\MSE(\X\thetalsK)\big]</math> and for any <math>t\ge 0</math>, | |||
<math display="block"> | |||
\p\big[\MSE(\X\thetalsK) > t \big]\le \p\big[\sup_{v \in \X K}(\eps^\top v) > nt/4 \big]\le 2de^{-\frac{nt^2}{32\sigma^2}} | |||
</math> | |||
To conclude the proof, we find <math>t</math> such that | |||
<math display="block"> | |||
2de^{-\frac{nt^2}{32\sigma^2}}\le \delta \ \Leftrightarrow \ t^2 \ge 32\sigma^2 \frac{ \log(2d)}{n} + 32 \sigma^2 \frac{ \log(1/\delta)}{n}\,. | |||
</math>}} | |||
Note that the proof of Theorem~[[#TH:lsOI |Linear Regression Model]] also applies to <math>\thetals_{\cB_1}</math> (exercise!) so that <math>\X \thetals_{\cB_1}</math> benefits from the best of both rates, | |||
<math display="block"> | |||
\E\big[\MSE(\X\thetals_{\cB_1})\big]\lesssim \min\Big(\sigma^2\frac{r}{n}, \sigma\sqrt{\frac{\log d}{n}}\Big)\,. | |||
</math> | |||
This is called an ''elbow effect''. The elbow takes place around <math>r\simeq\sqrt{n}</math> (up to logarithmic terms). | |||
====<math>\ell_0</math> constrained least squares==== | |||
By an abuse of notation, we call the number of non-zero coefficients of a vector <math> \theta \in \R^d </math> its ''<math>\ell_0</math> norm'' (it is not actually a norm). It is denoted by | |||
<math display="block"> | |||
|\theta|_0=\sum_{j=1}^d \1(\theta_j \neq 0)\,. | |||
</math> | |||
We call a vector <math>\theta</math> with ‘`small" <math>\ell_0</math> norm a ’'sparse'' vector. More precisely, if <math>|\theta|_0\le k</math>, we say that <math>\theta</math> is a <math>k</math>-sparse vector. We also call ''support'' of <math>\theta</math> the set | |||
<math display="block"> | |||
\supp(\theta)=\big\{j \in \{1, \ldots, d\}\,:\, \theta_j \neq 0\big\} | |||
</math> | |||
so that <math>|\theta|_0=\card(\supp(\theta))=:|\supp(\theta)|</math>\,. | |||
{{alert-info | | |||
The <math>\ell_0</math> terminology and notation comes from the fact that | |||
<math display="block"> | |||
\lim_{q \to 0^{\tiny +}}\sum_{j=1}^d|\theta_j|^q=|\theta|_0 | |||
</math> | |||
Therefore it is really <math>\lim_{q \to 0^{\tiny +}}|\theta|_q^q</math> but the notation <math>|\theta|_0^0</math> suggests too much that it is always equal to 1. | |||
}} | |||
By extension, denote by <math>\cB_0(k)</math> the <math>\ell_0</math> ball of <math>\R^d</math>, i.e., the set of <math>k</math>-sparse vectors, defined by | |||
<math display="block"> | |||
\cB_0(k)=\{\theta \in \R^d\,:\, |\theta|_0 \le k\}\,. | |||
</math> | |||
In this section, our goal is to control the <math>\MSE</math> of <math>\thetalsK</math> when <math>K=\cB_0(k)</math>. Note that computing <math>\thetals_{\cB_0(k)}</math> essentially requires computing <math>\binom{d}{k}</math> least squares estimators, which is an exponential number in <math>k</math>. In practice this will be hard (or even impossible) but it is interesting to understand the statistical properties of this estimator and to use them as a benchmark. | |||
{{proofcard|Theorem|TH:bss1|Fix a positive integer <math>k \le d/2</math>. Let <math>K=\cB_0(k)</math> be set of <math>k</math>-sparse vectors of <math>\R^d</math> and assume that <math>\theta^*\in \cB_0(k)</math>. Moreover, assume the conditions of Theorem~[[#TH:lsOI |Linear Regression Model]]. Then, for any <math>\delta > 0</math>, with probability <math>1-\delta</math>, it holds | |||
<math display="block"> | |||
\MSE(\X\thetals_{\cB_0(k)})\lesssim \frac{\sigma^2}{n}\log\binom{d}{2k} + \frac{\sigma^2k}{n} +\frac{\sigma^2}{n}\log(1/\delta)\,. | |||
</math> | |||
|We begin as in the proof of Theorem~[[#TH:lsOI |Linear Regression Model]] to get~\eqref{EQ:bound_ls_1}: | |||
<math display="block"> | |||
|\X\thetalsK-\X\theta^*|_2^2\le 2\eps^\top\X(\thetalsK - \theta^*)=2|\X\thetalsK-\X\theta^*|_2\frac{\eps^\top\X(\thetalsK - \theta^*)}{|\X(\thetalsK - \theta^*)|_2}\,. | |||
</math> | |||
We know that both <math>\thetalsK</math> and <math>\theta^*</math> are in <math>\cB_0(k)</math> so that <math>\thetalsK-\theta^* \in \cB_0(2k)</math>. For any <math>S \subset \{1, \ldots, d\}</math>, let <math>\X_S</math> denote the <math>n\times |S|</math> submatrix of <math>\X</math> that is obtained from the columns of <math>\X_j, j \in S</math> of <math>\X</math>. Denote by <math>r_S \le |S|</math> the rank of <math>\X_S</math> and let <math>\Phi_S=[\phi_1, \ldots, \phi_{r_S}] \in \R^{n\times r_S}</math> be an orthonormal basis of the column span of <math>\X_S</math>. Moreover, for any <math>\theta \in \R^d</math>, define <math>\theta(S) \in \R^{|S|}</math> to be the vector with coordinates <math>\theta_j, j \in S</math>. If we denote by <math>\hat S=\supp(\thetalsK - \theta^*)</math>, we have <math>|\hat S|\le 2k</math> and there exists <math>\nu \in \R^{r_{\hat S}}</math> such that | |||
<math display="block"> | |||
\X(\thetalsK - \theta^*)=\X_{\hat S}(\thetalsK(\hat S) - \theta^*(\hat S))=\Phi_{\hat S} \nu\,. | |||
</math> | |||
Therefore, | |||
<math display="block"> | |||
\frac{\eps^\top\X(\thetalsK - \theta^*)}{|\X(\thetalsK - \theta^*)|_2} =\frac{\eps^\top \Phi_{\hat S} \nu}{|\nu|_2}\le \max_{|S|= 2k}\sup_{u \in \cB_2^{r_{S}}}[\eps^\top \Phi_S] u | |||
</math> | |||
where <math>\cB_2^{r_{S}}</math> is the unit ball of <math>\R^{r_S}</math>. | |||
It yields | |||
<math display="block"> | |||
|\X\thetalsK-\X\theta^*|_2^2 \le 4 \max_{|S|= 2k}\sup_{u \in \cB_2^{r_{S}}}(\tilde \eps_S^\top u)^2\,, | |||
</math> | |||
with <math>\tilde \eps_S=\Phi_S^\top\eps \sim \sg_{r_S}(\sigma^2)</math>. | |||
Using a union bound, we get for any <math>t > 0</math>, | |||
<math display="block"> | |||
\p\big(\max_{|S|= 2k}\sup_{u \in \cB_2^{r_S}}(\tilde \eps^\top u)^2 > t\big) \le \sum_{|S|= 2k} \p\big( \sup_{u \in \cB_2^{r_S}}(\tilde \eps^\top u)^2 > t\big) | |||
</math> | |||
It follows from the proof of Theorem~[[guide:0251dfcdad#TH:supell2 |Sub-Gaussian Random Variables]] that for any <math>|S| \le 2k</math>, | |||
<math display="block"> | |||
\p\big( \sup_{u \in \cB_2^{r_S}}(\tilde \eps^\top u)^2 > t\big)\le 6^{|S|}e^{-\frac{t}{8\sigma^2}} \le 6^{2k}e^{-\frac{t}{8\sigma^2}}\,. | |||
</math> | |||
Together, the above three displays yield | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:prMSEl0HP} | |||
\p(|\X\thetalsK-\X\theta^*|_2^2 > 4t) \le \binom{d}{2k} 6^{2k} e^{-\frac{t}{8\sigma^2}}\,. | |||
\end{equation} | |||
</math> | |||
To ensure that the right-hand side of the above inequality is bounded by <math>\delta</math>, we need | |||
<math display="block"> | |||
t\ge C\sigma^2\Big\{\log \binom{d}{2k} + k\log(6) + \log(1/\delta)\Big\}\,. | |||
</math>}} | |||
How large is <math>\log\binom{d}{2k}</math>? It turns out that it is not much larger than <math>k</math>. | |||
{{proofcard|Lemma|lem:nchoosek|For any integers <math>1\le k \le n</math>, it holds | |||
<math display="block"> | |||
\binom{n}{k} \le \Big(\frac{en}{k}\Big)^k. | |||
</math> | |||
|Observe first that if <math>k=1</math>, since <math>n \ge 1</math>, it holds, | |||
<math display="block"> | |||
\binom{n}{1}=n\le en=\Big(\frac{en}{1}\Big)^1 | |||
</math> | |||
Next, we proceed by induction and assume that it holds for some <math>k \le n-1</math> that | |||
<math display="block"> | |||
\binom{n}{k} \le \Big(\frac{en}{k}\Big)^k. | |||
</math> | |||
Observe that | |||
<math display="block"> | |||
\binom{n}{k+1}=\binom{n}{k}\frac{n-k}{k+1}\le \Big(\frac{en}{k}\Big)^k\frac{n-k}{k+1} \leq \frac{e^k n^{k+1}}{(k+1)^{k+1}}\Big(1+\frac1k\Big)^k \,, | |||
</math> | |||
where we used the induction hypothesis in the first inequality. To conclude, it suffices to observe that | |||
<math display="block"> | |||
\begin{equation*} | |||
\left(1+\frac1k\right)^k\le e. \qedhere | |||
\end{equation*} | |||
</math>}} | |||
It immediately leads to the following corollary: | |||
{{proofcard|Corollary|COR:bss1|Under the assumptions of Theorem~[[#TH:bss1 |Linear Regression Model]], for any <math>\delta > 0</math>, with probability at least <math>1-\delta</math>, it holds | |||
<math display="block"> | |||
\MSE(\X\thetals_{\cB_0(k)})\lesssim \frac{\sigma^2k}{n}\log \Big(\frac{ed}{2k}\Big) + \frac{\sigma^2k}{n}\log(6) + \frac{\sigma^2}{n}\log(1/\delta)\,. | |||
</math>|}} | |||
Note that for any fixed <math>\delta</math>, there exits a constant <math>C_\delta > 0</math> such that for any <math>n \ge 2k</math>, with high probability, | |||
<math display="block"> | |||
\MSE(\X\thetals_{\cB_0(k)})\le C_\delta\frac{\sigma^2k}{n}\log \Big(\frac{ed}{2k}\Big)\,. | |||
</math> | |||
Comparing this result with Theorem~[[#TH:lsOI |Linear Regression Model]] with <math>r=k</math>, we see that the price to pay for not knowing the support of <math>\theta^*</math> but only its size, is a logarithmic factor in the dimension <math>d</math>. | |||
This result immediately leads to the following bound in expectation. | |||
{{proofcard|Corollary|COR:bss2|Under the assumptions of Theorem~[[#TH:bss1 |Linear Regression Model]], | |||
<math display="block"> | |||
\E\big[\MSE(\X\thetals_{\cB_0(k)})\big]\lesssim\frac{\sigma^2k}{n}\log \Big(\frac{ed}{k}\Big)\,. | |||
</math> | |||
|It follows from~\eqref{EQ:prMSEl0HP} that for any <math>H\ge 0</math>, | |||
<math display="block"> | |||
\begin{align*} | |||
\E\big[\MSE(\X\thetals_{\cB_0(k)})\big]&=\int_0^\infty\p(|\X\thetalsK-\X\theta^*|_2^2 > nu) \ud u\\ | |||
&\le H+\int_0^\infty\p(|\X\thetalsK-\X\theta^*|_2^2 > n(u+H)) \ud u\\ | |||
&\le H+\sum_{j=1}^{2k}\binom{d}{j} 6^{2k} \int_0^\infty e^{-\frac{n(u+H)}{32\sigma^2}} \ud u\\ | |||
&=H+\sum_{j=1}^{2k}\binom{d}{j} 6^{2k}e^{-\frac{nH}{32\sigma^2}} \frac{32\sigma^2}{n}\,. | |||
\end{align*} | |||
</math> | |||
Next, take <math>H</math> to be such that | |||
<math display="block"> | |||
\sum_{j=1}^{2k}\binom{d}{j} 6^{2k}e^{-\frac{nH}{32\sigma^2}}=1\,. | |||
</math> | |||
This yields | |||
<math display="block"> | |||
H \lesssim \frac{\sigma^2k}{n}\log \Big(\frac{ed}{k}\Big)\,, | |||
</math> | |||
which completes the proof.}} | |||
==The Gaussian Sequence Model== | |||
The Gaussian Sequence Model is a toy model that has received a lot of attention, mostly in the eighties. The main reason for its popularity is that it carries already most of the insight of nonparametric estimation. While the model looks very simple it allows to carry deep ideas that extend beyond its framework and in particular to the linear regression model that we are interested in. Unfortunately, we will only cover a small part of these ideas and the interested reader should definitely look at the excellent books by A. Tsybakov~<ref name="Tsy09">{{cite journal|last=LeCam|first=L.|journal=Ann. Statist.|year=1973|title=Convergence of estimates under dimensionality restrictions|volume=1}}</ref>{{rp|at=Chapter~3}} and I. Johnstone~<ref name="Joh11">{{cite journal|last1=Ga{\"{\i}}ffas|first1=St{{\'e}}phane|last2=Lecu{{\'e}}|first2=Guillaume|journal=J. Mach. Learn. Res.|year=2011|title=Hyper-sparse optimal aggregation|volume=12}}</ref>. | |||
The model is as follows: | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:gsm} | |||
Y_i=\theta^*_i +\eps_i\,,\qquad i=1, \ldots, d\,, | |||
\end{equation} | |||
</math> | |||
where <math>\eps_1, \ldots, \eps_d</math> are \iid <math>\cN(0,\sigma^2)</math> random variables. Note that often, <math>d</math> is taken equal to <math>\infty</math> in this sequence model and we will also discuss this case. Its links to nonparametric estimation will become clearer in Chapter~[[guide:8dff7bda6c#chap:misspecified |Misspecified Linear Models]]. The goal here is to estimate the unknown vector <math>\theta^*</math>. | |||
===The sub-Gaussian Sequence Model=== | |||
Note first that the model~\eqref{EQ:gsm} is a special case of the linear model with fixed design~\eqref{EQ:regmod} with <math>n=d</math> and <math>f(x_i)=x_i^\top \theta^*</math>, where <math>x_1, \ldots, x_n</math> form the canonical basis <math> e_1, \dots, e_n </math> of <math>\R^n</math> and <math>\eps</math> has a Gaussian distribution. Therefore, <math>n=d</math> is both the dimension of the parameter <math>\theta</math> and the number of observations and it looks like we have chosen to index this problem by <math>d</math> rather than <math>n</math> somewhat arbitrarily. We can bring <math>n</math> back into the picture, by observing that this model encompasses slightly more general choices for the design matrix <math>\X</math> as long as it satisfies the following assumption. | |||
\begin{assumption}{\textsf{ORT}} | |||
The design matrix satisfies | |||
<math display="block"> | |||
\frac{\X^\top \X}{n}=I_d\,, | |||
</math> | |||
where <math>I_d</math> denotes the identity matrix of <math>\R^d</math>. | |||
\end{assumption} | |||
Assumption~\textsf{ORT} allows for cases where <math>d\le n</math> but not <math>d > n</math> (high dimensional case) because of obvious rank constraints. In particular, it means that the <math>d</math> columns of <math>\X</math> are orthogonal in <math>\R^n</math> and all have norm <math>\sqrt{n}</math>. | |||
Under this assumption, it follows from the linear regression model~\eqref{EQ:regmod_matrix} that | |||
<math display="block"> | |||
\begin{align*} | |||
y:=\frac{1}{n}\X^\top Y&=\frac{\X^\top \X}{n}\theta^*+ \frac{1}{n}\X^\top\eps\\ | |||
&=\theta^*+\xi\,, | |||
\end{align*} | |||
</math> | |||
where <math>\xi=(\xi_1, \ldots, \xi_d)\sim \sg_d(\sigma^2/n)</math> (If <math>\eps</math> is Gaussian, we even have <math>\xi \sim \cN_d(0, \sigma^2/n)</math>). As a result, under the assumption~\textsf{ORT}, when <math>\xi</math> is Gaussian, the linear regression model~\eqref{EQ:regmod_matrix} is equivalent to the Gaussian Sequence Model~\eqref{EQ:gsm} up to a transformation of the data <math>Y</math> and a rescaling of the variance. Moreover, for any estimator <math>\hat \theta \in \R^d</math>, under \textsf{ORT}, it follows from~\eqref{EQ:mse_matrix} that | |||
<math display="block"> | |||
\MSE(\X\hat \theta)=(\hat \theta -\theta^*)^\top \frac{\X^\top \X}{n}(\hat \theta -\theta^*)=|\hat \theta - \theta^*|_2^2\,. | |||
</math> | |||
Furthermore, for any <math>\theta \in \R^d</math>, the assumption~\textsf{ORT} yields, | |||
<math display="block"> | |||
\begin{align} | |||
|y-\theta|_2^2&=|\frac{1}{n}\X^\top Y-\theta|_2^2 \nonumber\\ | |||
&= |\theta|_2^2 - \frac{2}{n} \theta^\top \X^\top Y + \frac{1}{n^2} Y^\top \X \X^\top Y\nonumber \\ | |||
&= \frac{1}{n} |\X \theta|_2^2 - \frac{2}{n} ( \X\theta)^\top Y + \frac{1}{n} |Y|_2^2 +Q \nonumber \\ | |||
&= \frac{1}{n} |Y - \X \theta|_2^2 +Q\label{EQ:ERM_sGSM}\,, | |||
\end{align} | |||
</math> | |||
where <math>Q</math> is a constant that does not depend on <math>\theta</math> and is defined by | |||
<math display="block"> | |||
Q=\frac{1}{n^2} Y^\top \X \X^\top Y- \frac{1}{n} |Y|_2^2 | |||
</math> | |||
This implies in particular that the least squares estimator <math>\thetals</math> is equal to <math>y</math>. | |||
\bigskip | |||
We introduce a sightly more general model called ''sub-Gaussian sequence model'': | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:sGSM} | |||
y=\theta^* +\xi \in \R^d\,, | |||
\end{equation} | |||
</math> | |||
where <math>\xi\sim \sg_d(\sigma^2/n)</math>. | |||
In this section, we can actually completely ‘`forget" about our original model~\eqref{EQ:regmod_matrix}. In particular we can define this model independently of Assumption \textsf{ORT} and thus for any values of <math>n</math> and <math>d</math>. | |||
The sub-Gaussian sequence model and the Gaussian sequence model are called ’'direct'' (observation) problems as opposed to ''inverse problems'' where the goal is to estimate the parameter <math>\theta^*</math> only from noisy observations of its image through an operator. The linear regression model is one such inverse problem where the matrix <math>\X</math> plays the role of a linear operator. However, in these notes, we never try to invert the operator. See <ref name="Cav11">{{citation|last1=Alex|last2=re|first2=B.|year=2004|title=Statistique appliqu\'ee}}</ref> for an interesting survey on the statistical theory of inverse problems. | |||
===Sparsity adaptive thresholding estimators=== | |||
If we knew a priori that <math>\theta</math> was <math>k</math>-sparse, we could directly employ Corollary~[[#COR:bss1 |Linear Regression Model]] to obtain that with probability at least <math>1-\delta</math>, we have | |||
<math display="block"> | |||
\MSE(\X\thetals_{\cB_0(k)})\le C_\delta\frac{\sigma^2k}{n}\log\Big(\frac{ed}{2k}\Big)\,. | |||
</math> | |||
As we will see, the assumption~\textsf{ORT} gives us the luxury to not know <math>k</math> and yet ''adapt'' to its value. Adaptation means that we can construct an estimator that does not require the knowledge of <math>k</math> (the smallest such that <math>|\theta^*|_0\le k</math>) and yet perform as well as <math>\thetals_{\cB_0(k)}</math>, up to a multiplicative constant. | |||
Let us begin with some heuristic considerations to gain some intuition. Assume the sub-Gaussian sequence model~\eqref{EQ:sGSM}. If nothing is known about <math>\theta^*</math> it is natural to estimate it using the least squares estimator <math>\thetals=y</math>. In this case, | |||
<math display="block"> | |||
\MSE(\X\thetals)=|y-\theta^*|_2^2=|\xi|_2^2 \le C_\delta\frac{\sigma^2d}{n}\,, | |||
</math> | |||
where the last inequality holds with probability at least <math>1-\delta</math>. This is actually what we are looking for if <math>k=Cd</math> for some positive constant <math>C\le 1</math>. The problem with this approach is that it does not use the fact that <math>k</math> may be much smaller than <math>d</math>, which happens when <math>\theta^*</math> has many zero coordinates. | |||
If <math>\theta^*_j=0</math>, then, <math>y_j=\xi_j</math>, which is a sub-Gaussian random variable with variance proxy <math>\sigma^2/n</math>. In particular, we know from Lemma~[[guide:0251dfcdad#lem:subgauss |Sub-Gaussian Random Variables]] that with probability at least <math>1-\delta</math>, | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:tau1} | |||
|\xi_j|\le \sigma\sqrt{\frac{2\log (2/\delta)}{n}}=\tau\,. | |||
\end{equation} | |||
</math> | |||
The consequences of this inequality are interesting. One the one hand, if we observe <math>|y_j|\gg \tau</math> , then it must correspond to <math>\theta_j^*\neq 0</math>. On the other hand, if <math>|y_j| \le \tau</math> is smaller, then, <math>\theta_j^*</math> cannot be very large. In particular, by the triangle inequality, <math>|\theta^*_j| \le |y_j|+|\xi_j| \le 2\tau</math>. Therefore, we loose at most <math>2\tau</math> by choosing <math>\hat \theta_j=0</math>. It leads us to consider the following estimator. | |||
{{defncard|label=|id=def:hard| | |||
The '''hard thresholding''' estimator with threshold <math>2\tau > 0</math> is denoted by <math>\thetahard</math> and has coordinates | |||
<math display="block"> | |||
\thetahard_j=\left\{ | |||
\begin{array}{ll} | |||
y_j& \text{if} \ |y_j| > 2\tau\,,\\ | |||
0& \text{if} \ |y_j|\le2\tau\,, | |||
\end{array} | |||
\right. | |||
</math> | |||
for <math>j=1, \ldots, d</math>. In short, we can write <math>\thetahard_j=y_j\1(|y_j| > 2\tau)</math>.}} | |||
From our above consideration, we are tempted to choose <math>\tau</math> as in~\eqref{EQ:tau1}. Yet, this threshold is not large enough. Indeed, we need to choose <math>\tau</math> such that <math>|\xi_j|\le \tau</math> ''simultaneously'' for all <math>j</math>. This can be done using a maximal inequality. Namely, Theorem~[[guide:0251dfcdad#TH:finitemax |Sub-Gaussian Random Variables]] ensures that with probability at least <math>1-\delta</math>, | |||
<math display="block"> | |||
\max_{1\le j\le d}|\xi_j|\le\sigma\sqrt{\frac{2\log (2d/\delta)}{n}}. | |||
</math> | |||
It yields the following theorem. | |||
{{proofcard|Theorem|TH:hard|Consider the linear regression model~\eqref{EQ:regmod_matrix} under the assumption~\textsf{ORT} or, equivalenty, the sub-Gaussian sequence model~\eqref{EQ:sGSM}. Then the hard thresholding estimator <math>\thetahard</math> with threshold | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:tau} | |||
2\tau=2\sigma\sqrt{\frac{2\log (2d/\delta)}{n}} | |||
\end{equation} | |||
</math> | |||
enjoys the following two properties on the same event <math>\cA</math> such that <math>\p(\cA)\ge 1-\delta</math>: | |||
<ul style{{=}}"list-style-type:lower-roman"><li>If <math>|\theta^*|_0=k</math>, | |||
<math display="block"> | |||
\MSE(\X\thetahard)=|\thetahard-\theta^*|_2^2\lesssim \sigma^2\frac{k\log (2d/\delta)}{n}\,. | |||
</math></li> | |||
<li>if <math>\min_{j \in \supp(\theta^*)}|\theta^*_j| > 3\tau</math>, then | |||
<math display="block"> | |||
\supp(\thetahard)=\supp(\theta^*)\,. | |||
</math></li> | |||
</ul> | |||
|Define the event | |||
<math display="block"> | |||
\cA=\Big\{\max_j|\xi_j|\le \tau\big\}\,, | |||
</math> | |||
and recall that Theorem~[[guide:0251dfcdad#TH:finitemax |Sub-Gaussian Random Variables]] yields <math>\p(\cA)\ge 1-\delta</math>. On the event <math>\cA</math>, the following holds for any <math>j=1, \ldots, d</math>. | |||
First, observe that | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:prthhard1} | |||
|y_j| > 2\tau \quad \Rightarrow \quad |\theta^*_j|\ge |y_j|-|\xi_j| > \tau | |||
\end{equation} | |||
</math> | |||
and | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:prthhard2} | |||
|y_j|\le 2\tau \quad \Rightarrow \quad |\theta^*_j|\le |y_j| + |\xi_j|\le 3\tau. | |||
\end{equation} | |||
</math> | |||
It yields | |||
<math display="block"> | |||
\begin{align*} | |||
|\thetahard_j-\theta^*_j|&=|y_j-\theta^*_j|\1(|y_j| > 2\tau)+ |\theta^*_j|\1(|y_j|\le2\tau)&\\ | |||
&\le \tau\1(|y_j| > 2\tau)+|\theta^*_j|\1(|y_j|\le2\tau)& \\\ | |||
&\le \tau\1(|\theta^*_j| > \tau)+|\theta^*_j|\1(|\theta^*_j|\le 3\tau)& \text{by}~\eqref{EQ:prthhard1} \text{ and}~\eqref{EQ:prthhard2}\\ | |||
&\le 4\min(|\theta^*_j|,\tau) | |||
\end{align*} | |||
</math> | |||
It yields | |||
<math display="block"> | |||
\begin{align*} | |||
|\thetahard-\theta^*|_2^2=\sum_{j=1}^d|\thetahard_j-\theta^*_j|^2\le 16\sum_{j=1}^d\min(|\theta^*_j|^2,\tau^2)\le 16|\theta^*|_0\tau^2\,. | |||
\end{align*} | |||
</math> | |||
This completes the proof of (i). | |||
To prove (ii), note that if <math>\theta^*_j\neq 0</math>, then <math>|\theta^*_j| > 3\tau</math> so that | |||
<math display="block"> | |||
|y_j|=|\theta^*_j+\xi_j| > 3\tau-\tau=2\tau\,. | |||
</math> | |||
Therefore, <math>\thetahard_j\neq 0</math> so that <math>\supp(\theta^*)\subset \supp(\thetahard)</math>. | |||
Next, if <math>\thetahard_j\neq 0</math>, then <math>|\thetahard_j|=|y_j| > 2\tau</math>. It yields | |||
<math display="block"> | |||
|\theta^*_j|\ge |y_j|-\tau > \tau. | |||
</math> | |||
Therefore, <math>|\theta^*_j|\neq 0</math> and <math>\supp(\thetahard)\subset \supp(\theta^*)</math>.}} | |||
Similar results can be obtained for the '''soft thresholding''' estimator <math>\thetasoft</math> defined by | |||
<math display="block"> | |||
\thetasoft_j=\left\{ | |||
\begin{array}{ll} | |||
y_j-2\tau& \text{if} \ y_j > 2\tau\,,\\ | |||
y_j+2\tau& \text{if} \ y_j < -2\tau\,,\\ | |||
0& \text{if} \ |y_j|\le2\tau\,, | |||
\end{array} | |||
\right. | |||
</math> | |||
In short, we can write | |||
<math display="block"> | |||
\thetasoft_j=\Big(1-\frac{2\tau}{|y_j|}\Big)_+y_j | |||
</math> | |||
\begin{center} | |||
<div id="FIG:threshold" class="d-flex justify-content-center"> | |||
[[File: | 400px | thumb | Transformation applied to <math>y_j</math> with <math>2\tau=1</math> to obtain the hard (left) and soft (right) thresholding estimators}\label{FIG:threshold ]] | |||
</div> | |||
\end{center} | |||
==High-dimensional linear regression== | |||
===The BIC and Lasso estimators=== | |||
It can be shown (see Problem~[[#EXO:sparse:variation |Linear Regression Model]]) that the hard and soft thresholding estimators are solutions of the following penalized empirical risk minimization problems: | |||
<math display="block"> | |||
\begin{align*} | |||
\thetahard&=\argmin_{\theta \in \R^d} \Big\{|y-\theta|_2^2 + 4\tau^2|\theta|_0\Big\}\\ | |||
\thetasoft&=\argmin_{\theta \in \R^d} \Big\{|y-\theta|_2^2 + 4\tau|\theta|_1\Big\} | |||
\end{align*} | |||
</math> | |||
In view of~\eqref{EQ:ERM_sGSM}, under the assumption~\textsf{ORT}, the above variational definitions can be written as | |||
<math display="block"> | |||
\begin{align*} | |||
\thetahard&=\argmin_{\theta \in \R^d} \Big\{\frac1n|Y-\X\theta|_2^2 + 4\tau^2|\theta|_0\Big\}\\ | |||
\thetasoft&=\argmin_{\theta \in \R^d} \Big\{\frac1n|Y-\X\theta|_2^2 + 4\tau|\theta|_1\Big\}\\ | |||
\end{align*} | |||
</math> | |||
When the assumption~\textsf{ORT} is not satisfied, they no longer correspond to thresholding estimators but can still be defined as above. We change the constant in the threshold parameters for future convenience.{{defncard|label=id=|Fix <math>\tau > 0</math> and assume the linear regression model~\eqref{EQ:regmod_matrix}. The BIC<ref group="Notes" >Note that it minimizes the Bayes Information Criterion (BIC) employed in the traditional literature of asymptotic statistics if <math>\tau=\sqrt{\log(d)/n}</math>. We will use the same value below, up to multiplicative constants (it's the price to pay to get non-asymptotic results).</ref> estimator of <math>\theta^*</math> is defined by any <math>\thetabic</math> such that | |||
<math display="block"> | |||
\thetabic \in \argmin_{\theta \in \R^d} \Big\{\frac1n|Y-\X\theta|_2^2 + \tau^2|\theta|_0\Big\}.\\ | |||
</math> | |||
Moreover, the Lasso estimator of <math>\theta^*</math> is defined by any <math>\thetalasso</math> such that | |||
<math display="block"> | |||
\thetalasso \in \argmin_{\theta \in \R^d} \Big\{\frac1n|Y-\X\theta|_2^2 + 2\tau|\theta|_1\Big\}.\\ | |||
</math> | |||
}} | |||
{{alert-info | [Numerical considerations] Computing the BIC estimator can be proved to be NP-hard in the worst case. In particular, no computational method is known to be significantly faster than the brute force search among all <math>2^d</math> sparsity patterns. Indeed, we can rewrite: | |||
<math display="block"> | |||
\min_{\theta \in \R^d} \Big\{\frac1n|Y-\X\theta|_2^2 + \tau^2|\theta|_0\Big\}=\min_{0\le k \le d} \Big\{\min_{\theta\,:\, |\theta|_0=k}\frac1n|Y-\X\theta|_2^2 + \tau^2k\Big\} | |||
</math> | |||
To compute <math>\min_{\theta\,:\, |\theta|_0=k}\frac1n|Y-\X\theta|_2^2</math>, we need to compute <math>\binom{d}{k}</math> least squares estimators on a space of size <math>k</math>. Each costs <math>O(k^3)</math> (matrix inversion). Therefore the total cost of the brute force search is | |||
<math display="block"> | |||
C\sum_{k=0}^d \binom{d}{k}k^3=Cd^32^d\,. | |||
</math> | |||
By contrast, computing the Lasso estimator is a convex problem and there exist many efficient algorithms to solve it. We will not describe this optimization problem in detail but only highlight a few of the best known algorithms: | |||
<ul><li> Probably the most popular method among statisticians relies on coordinate gradient descent. It is implemented in the \textsf{glmnet} package in \textsf{R} <ref name="FriHasTib10">{{cite journal|last1=Friedman|first1=Jerome|last2=Hastie|first2=Trevor|last3=Tibshirani|first3=Robert|journal=Journal of Statistical Software|title=Regularization paths for generalized linear models via coordinate descent|volume=33|number=1|publisher=NIH Public Access}}</ref>, | |||
</li> | |||
<li> An interesting method called LARS <ref name="EfrHasJoh04">{{cite journal|last1=Efron|first1=Bradley|last2=Hastie|first2=Trevor|last3=Johnstone|first3=Iain|last4=Tibshirani|first4=Robert|journal=Ann. Statist.|year=2004|title=Least angle regression|volume=32|number=2}}</ref> computes the entire ''regularization path'', i.e., the solution of the convex problem for all values of <math>\tau</math>. It relies on the fact that, as a function of <math>\tau</math>, the solution <math>\thetalasso</math> is a piecewise linear function (with values in <math>\R^d</math>). Yet this method proved to be too slow for very large problems and has been replaced by <TT>glmnet</TT> which computes solutions for values of <math>\tau</math> on a grid much faster. | |||
</li> | |||
<li> The optimization community has made interesting contributions to this field by using proximal methods to solve this problem. These methods exploit the structure of the objective function which is of the form smooth (sum of squares) + simple (<math>\ell_1</math> norm). A good entry point to this literature is perhaps the FISTA algorithm <ref name="BecTeb09">{{cite journal|last1=Beck|first1=Amir|last2=Teboulle|first2=Marc|journal=SIAM J. Imaging Sci.|year=2009|title=A fast iterative shrinkage-thresholding algorithm for linear inverse problems|volume=2|number=1}}</ref>. | |||
</li> | |||
<li> Recently there has been a lot of interest around this objective for very large <math>d</math> and very large <math>n</math>. In this case, even computing <math>|Y-\X\theta|_2^2 </math> may be computationally expensive and solutions based on stochastic gradient descent are flourishing. | |||
</li> | |||
</ul> | |||
}} | |||
Note that by Lagrange duality, computing <math>\thetalasso</math> is equivalent to solving an <math>\ell_1</math> ''constrained'' least squares. Nevertheless, the radius of the <math>\ell_1</math> constraint is unknown. In general, it is hard to relate Lagrange multipliers to the size constraints. The name ‘`Lasso" was originally given to the constrained version this estimator in the original paper of Robert Tibshirani <ref name="Tib96">{{cite journal|last=Tibshirani|first=Robert|journal=J. Roy. Statist. Soc. Ser. B|year=1996|title=Regression shrinkage and selection via the lasso|volume=58|number=1}}</ref>. | |||
===Analysis of the BIC estimator=== | |||
While computationally hard to implement, the BIC estimator gives us a good benchmark for sparse estimation. Its performance is similar to that of <math>\thetahard</math> but without requiring the assumption \textsf{ORT}. | |||
{{proofcard|Theorem|TH:BIC|Assume that the linear model~\eqref{EQ:regmod_matrix} holds, where <math>\eps \sim \sg_n(\sigma^2)</math> and that <math>|\theta^*|_0\ge 1</math>. Then, the BIC estimator <math>\thetabic</math> with regularization parameter | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:taubic} | |||
\tau^2=16\log(6)\frac{\sigma^2}{n} + 32\frac{\sigma^2 \log (ed)}{n}\,. | |||
\end{equation} | |||
</math> | |||
satisfies | |||
<math display="block"> | |||
\begin{equation} | |||
\MSE(\X\thetabic)=\frac{1}{n}|\X\thetabic-\X\theta^*|_2^2\lesssim |\theta^*|_0 \sigma^2\frac{ \log(ed/\delta)}{n} | |||
\end{equation} | |||
</math> | |||
with probability at least <math>1-\delta</math>. | |||
|We begin as usual by noting that | |||
<math display="block"> | |||
\frac1n|Y-\X\thetabic|_2^2 + \tau^2|\thetabic|_0 \le \frac1n|Y-\X\theta^*|_2^2 + \tau^2|\theta^*|_0\,. | |||
</math> | |||
It implies | |||
<math display="block"> | |||
|\X\thetabic-\X\theta^*|_2^2 \le n\tau^2|\theta^*|_0 + 2\eps^\top\X(\thetabic-\theta^*)- n\tau^2|\thetabic|_0\,. | |||
</math> | |||
First, note that | |||
<math display="block"> | |||
\begin{align*} | |||
2\eps^\top\X(\thetabic-\theta^*)&=2\eps^\top\Big(\frac{\X\thetabic-\X\theta^*}{|\X\thetabic-\X\theta^*|_2}\Big)|\X\thetabic-\X\theta^*|_2\\ | |||
&\le 2\Big[\eps^\top\Big(\frac{\X\thetabic-\X\theta^*}{|\X\thetabic-\X\theta^*|_2}\Big)\Big]^2 + \frac12 |\X\thetabic-\X\theta^*|_2^2\,, | |||
\end{align*} | |||
</math> | |||
where we use the inequality <math>2ab\le 2a^2+\frac12b^2</math>. Together with the previous display, it yields | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:pr_bic_1} | |||
|\X\thetabic-\X\theta^*|_2^2 \le 2n\tau^2|\theta^*|_0 + 4\big[\eps^\top\cU(\thetabic-\theta^*)\big]^2- 2n\tau^2|\thetabic|_0\, | |||
\end{equation} | |||
</math> | |||
where | |||
<math display="block"> | |||
\cU(z)=\frac{z}{|z|_2} | |||
</math> | |||
Next, we need to ``sup out" <math>\thetabic</math>. To that end, we decompose the sup into a max over cardinalities as follows: | |||
<math display="block"> | |||
\sup_{\theta \in \R^d}=\max_{1\le k \le d} \max_{|S|=k}\sup_{\supp(\theta)=S}\,. | |||
</math> | |||
Applied to the above inequality, it yields | |||
<math display="block"> | |||
\begin{align*} | |||
4\big[\eps^\top&\cU(\thetabic-\theta^*)\big]^2- 2n\tau^2|\thetabic|_0\\ | |||
& \le \max_{1\le k \le d}\big\{\max_{|S|=k} \sup_{\supp(\theta)=S}4\big[\eps^\top\cU(\theta-\theta^*)\big]^2- 2n\tau^2k\big\}\\ | |||
&\le \max_{1\le k \le d}\big\{\max_{|S|=k} \sup_{u\in \cB_2^{r_{S,*}}}4\big[\eps^\top\Phi_{S,*}u\big]^2- 2n\tau^2k\big\}\,, | |||
\end{align*} | |||
</math> | |||
where <math>\Phi_{S,*}=[\phi_1, \ldots, \phi_{r_{S,*}}]</math> is an orthonormal basis of the set <math>\{\X_j, j \in S \cup \supp(\theta^*)\}</math> of columns of <math>\X</math> and <math>r_{S,*} \le |S|+|\theta^*|_0</math> is the dimension of this column span. | |||
Using union bounds, we get for any <math>t > 0</math>, | |||
<math display="block"> | |||
\begin{align*} | |||
\p&\Big( \max_{1\le k \le d}\big\{\max_{|S|=k} \sup_{u\in \cB_2^{r_{S,*}}}4\big[\eps^\top\Phi_{S,*}u\big]^2- 2n\tau^2k\big\}\ge t\Big)\\ | |||
&\le \sum_{k=1}^d\sum_{|S|=k}\p\Big( \sup_{u\in \cB_2^{r_{S,*}}}\big[\eps^\top\Phi_{S,*}u\big]^2\ge \frac{t}4+ \frac12n\tau^2k\Big) | |||
\end{align*} | |||
</math> | |||
Moreover, using the <math>\eps</math>-net argument from Theorem~[[guide:0251dfcdad#TH:supell2 |Sub-Gaussian Random Variables]], we get for <math>|S|=k</math>, | |||
<math display="block"> | |||
\begin{align*} | |||
\p\Big( \sup_{u\in \cB_2^{r_{S,*}}}&\big[\eps^\top\Phi_{S,*}u\big]^2\ge \frac{t}4+ \frac12n\tau^2k\Big)\le 2\cdot 6^{r_{S,*}}\exp\Big(-\frac{\frac{t}4+ \frac12n\tau^2k}{8\sigma^2}\Big)\\ | |||
&\le 2 \exp\Big(-\frac{t}{32\sigma^2}- \frac{n\tau^2k}{16\sigma^2}+(k+|\theta^*|_0)\log(6)\Big) | |||
\\ | |||
&\le \exp\Big(-\frac{t}{32\sigma^2}- 2k\log(ed)+|\theta^*|_0\log(12)\Big) | |||
\end{align*} | |||
</math> | |||
where, in the last inequality, we used the definition~\eqref{EQ:taubic} of <math>\tau</math>. | |||
Putting everything together, we get | |||
<math display="block"> | |||
\begin{align*} | |||
\p&\Big(|\X\thetabic-\X\theta^*|_2^2 \ge 2n\tau^2|\theta^*|_0+t\Big) \le\\ | |||
& \sum_{k=1}^d\sum_{|S|=k} \exp\Big(-\frac{t}{32\sigma^2}- 2k\log(ed)+|\theta^*|_0\log(12)\Big)\\ | |||
&= \sum_{k=1}^d \binom{d}{k} \exp\Big(-\frac{t}{32\sigma^2}- 2k\log(ed)+|\theta^*|_0\log(12)\Big)\\ | |||
&\le \sum_{k=1}^d \exp\Big(-\frac{t}{32\sigma^2}-k\log(ed)+|\theta^*|_0\log(12)\Big)& \text{by Lemma~[[#lem:nchoosek |Linear Regression Model]]}\\ | |||
&= \sum_{k=1}^d(ed)^{-k} \exp\Big(-\frac{t}{32\sigma^2} + |\theta^*|_0\log(12)\Big)\\ | |||
&\le \exp\Big(-\frac{t}{32\sigma^2} + |\theta^*|_0\log(12)\Big)\,. | |||
\end{align*} | |||
</math> | |||
To conclude the proof, choose <math>t=32\sigma^2 |\theta^*|_0\log(12) + 32\sigma^2\log(1/\delta)</math> and observe that combined with~\eqref{EQ:pr_bic_1}, it yields with probability <math>1-\delta</math>, | |||
<math display="block"> | |||
\begin{align*} | |||
|\X\thetabic-\X\theta^*|_2^2 & \le 2n\tau^2|\theta^*|_0 + t \\ | |||
&= 64\sigma^2 \log(ed) |\theta^*|_0 +64\log(12)\sigma^2|\theta^*|_0 + 32\sigma^2\log(1/\delta)\\ | |||
&\le 224|\theta^*|_0 \sigma^2 \log(ed)+ 32\sigma^2\log(1/\delta)\,. | |||
\end{align*} | |||
</math>}} | |||
It follows from Theorem~[[#TH:BIC |Linear Regression Model]] that <math>\thetabic</math> ’'adapts'' to the unknown sparsity of <math>\theta^*</math>, just like <math>\thetahard</math>. Moreover, this holds under no assumption on the design matrix <math>\X</math>. | |||
===Analysis of the Lasso estimator=== | |||
====Slow rate for the Lasso estimator==== | |||
The properties of the BIC estimator are quite impressive. It shows that under no assumption on <math>\X</math>, one can mimic two oracles: (i) the oracle that knows the support of <math>\theta^*</math> (and computes least squares on this support), up to a <math>\log(ed)</math> term and (ii) the oracle that knows the sparsity <math>|\theta^*|_0</math> of <math>\theta^*</math>, up to a smaller logarithmic term <math>\log(ed/|\theta^*|_0)</math>, which is subsumed by <math>\log(ed)</math>. Actually, the <math> \log(ed) </math> can even be improved to <math> \log(ed/|\theta^\ast|_0) </math> by using a modified BIC estimator (see Problem~[[#EXO:sparse:betterbic |Linear Regression Model]]). | |||
The Lasso estimator is a bit more difficult to analyze because, by construction, it should more naturally adapt to the unknown <math>\ell_1</math>-norm of <math>\theta^*</math>. This can be easily shown as in the next theorem, analogous to Theorem~[[#TH:ell1const |Linear Regression Model]]. | |||
{{proofcard|Theorem|TH:lasso_slow|Assume that the linear model~\eqref{EQ:regmod_matrix} holds where <math>\eps\sim\sg_n(\sigma^2)</math>. Moreover, assume that the columns of <math>\X</math> are normalized in such a way that <math>\max_j|\X_j|_2\le \sqrt{n}</math>. Then, the Lasso estimator <math>\thetalasso</math> with regularization parameter | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:taulasso} | |||
2\tau=2\sigma\sqrt{\frac{2\log(2d)}{n}}+2\sigma\sqrt{\frac{2\log(1/\delta)}{n}} | |||
\end{equation} | |||
</math> | |||
satisfies | |||
<math display="block"> | |||
\MSE(\X\thetalasso)=\frac{1}{n}|\X\thetalasso-\X\theta^*|_2^2\le 4|\theta^*|_1\sigma\sqrt{\frac{2\log(2d)}{n}}+4|\theta^*|_1\sigma\sqrt{\frac{2\log(1/\delta)}{n}} | |||
</math> | |||
with probability at least <math>1-\delta</math>. | |||
|From the definition of <math>\thetalasso</math>, it holds | |||
<math display="block"> | |||
\frac1n|Y-\X\thetalasso|_2^2 + 2\tau|\thetalasso|_1 \le \frac1n|Y-\X\theta^*|_2^2 + 2\tau|\theta^*|_1\,. | |||
</math> | |||
Using H\"older's inequality, it implies | |||
<math display="block"> | |||
\begin{align*} | |||
|\X\thetalasso-\X\theta^*|_2^2 &\le 2\eps^\top\X(\thetalasso-\theta^*)+ 2n\tau\big(|\theta^*|_1-|\thetalasso|_1\big) \\ | |||
&\le 2|\X^\top\eps|_\infty|\thetalasso|_1-2n\tau|\thetalasso|_1 + 2|\X^\top\eps|_\infty|\theta^*|_1+2n\tau|\theta^*|_1\\ | |||
&= 2(|\X^\top\eps|_\infty-n\tau)|\thetalasso|_1 + 2(|\X^\top\eps|_\infty+n\tau)|\theta^*|_1 | |||
\end{align*} | |||
</math> | |||
Observe now that for any <math>t > 0</math>, | |||
<math display="block"> | |||
\p(|\X^\top\eps|_\infty\ge t)=\p(\max_{1\le j \le d}|\X_j^\top \eps| > t) \le 2de^{-\frac{t^2}{2n\sigma^2}} | |||
</math> | |||
Therefore, taking <math>t=\sigma\sqrt{2n\log(2d)}+\sigma\sqrt{2n\log(1/\delta)}=n\tau</math>, we get that with probability at least <math>1-\delta</math>, | |||
<math display="block"> | |||
\begin{equation*} | |||
|\X\thetalasso-\X\theta^*|_2^2\le 4n\tau|\theta^*|_1\,. \qedhere | |||
\end{equation*} | |||
</math>}} | |||
Notice that the regularization parameter~\eqref{EQ:taulasso} depends on the confidence level <math>\delta</math>. This is not the case for the BIC estimator (see~\eqref{EQ:taubic}). | |||
\medskip | |||
The rate in Theorem~[[#TH:lasso_slow |Linear Regression Model]] is of order <math>\sqrt{(\log d)/n}</math> (''slow rate''), which is much slower than the rate of order <math>(\log d)/n</math> (''fast rate'') for the BIC estimator. Hereafter, we show that fast rates can also be achieved by the computationally efficient Lasso estimator, but at the cost of a much stronger condition on the design matrix <math>\X</math>. | |||
====Incoherence==== | |||
\begin{assumption}{<math>\mathsf{INC}(k)</math>} | |||
We say that the design matrix <math>\X</math> has incoherence <math>k</math> for some integer <math>k > 0</math> if | |||
<math display="block"> | |||
\big|\frac{\X^\top \X}{n}-I_d\big|_\infty\le \frac{1}{32k} | |||
</math> | |||
where the <math>|A|_\infty</math> denotes the largest element of <math>A</math> in absolute value. | |||
Equivalently, | |||
<ul><li> For all <math>j=1, \ldots, d</math>, | |||
<math display="block"> | |||
\left|\frac{|\X_j|_2^2}{n}-1\right|\le \frac{1}{32k}\,. | |||
</math> | |||
</li> | |||
<li> For all <math>1\le i,j\le d</math>, <math>i\neq j</math>, we have | |||
<math display="block"> | |||
\frac{|\X_i^\top \X_j|}{n} \le \frac{1}{32k}\,. | |||
</math> | |||
</li> | |||
</ul> | |||
\end{assumption} | |||
Note that Assumption~\textsf{ORT} arises as the limiting case of <math>\mathsf{INC}(k)</math> as <math>k \to \infty</math>. However, while Assumption~\textsf{ORT} requires <math>d \le n</math>, here we may have <math>d \gg n</math> as illustrated in Proposition~[[#prop:INCRad |Linear Regression Model]] below. To that end, we simply have to show that there exists a matrix that satisfies <math>\mathsf{INC}(k)</math> even for <math>d > n</math>. We resort to the ''probabilistic method'' <ref name="AloSpe08">{{citation|last1=Alex|last2=re|first2=B.|year=2004|title=Statistique appliqu\'ee}}</ref>. The idea of this method is that if we can find a probability measure that assigns positive probability to objects that satisfy a certain property, then there must exist objects that satisfy said property. | |||
In our case, we consider the following probability distribution on random matrices with entries in <math>\{\pm 1\}</math>. Let the design matrix <math>\X</math> have entries that are \iid Rademacher <math>(\pm 1)</math> random variables. We are going to show that most realizations of this random matrix satisfy Assumption~<math>\mathsf{INC}(k)</math> for large enough <math>n</math>. | |||
{{proofcard|Proposition|prop:INCRad|Let <math>\X \in \R^{n\times d}</math> be a random matrix with entries <math>X_{ij}, i=1,\ldots, n, j=1, \ldots, d</math>, that are \iid Rademacher <math>(\pm 1)</math> random variables. Then, <math>\X</math> has incoherence <math>k</math> with probability <math>1-\delta</math> as soon as | |||
<math display="block"> | |||
n\ge 2^{11}k^2\log(1/\delta)+2^{13}k^2\log(d)\,. | |||
</math> | |||
It implies that there exist matrices that satisfy Assumption~<math>\mathsf{INC}(k)</math> for | |||
<math display="block"> | |||
n \geq C k^2\log(d)\,, | |||
</math> | |||
for some numerical constant <math>C</math>. | |||
|Let <math>\eps_{ij} \in \{-1,1\}</math> denote the Rademacher random variable that is on the <math>i</math>th row and <math>j</math>th column of <math>\X</math>. | |||
Note first that the <math>j</math>th diagonal entries of <math>\X^\top\X/n</math> are given by | |||
<math display="block"> | |||
\frac{1}{n}\sum_{i=1}^n \eps_{i,j}^2=1. | |||
</math> | |||
Moreover, for <math>j\neq k</math>, the <math>(j,k)</math>th entry of the <math>d\times d</math> matrix <math>\X^\top\X/n</math> is given by | |||
<math display="block"> | |||
\frac{1}{n}\sum_{i=1}^n \eps_{i,j}\eps_{i,k}=\frac{1}{n}\sum_{i=1}^n \xi_{i}^{(j,k)}\,, | |||
</math> | |||
where for each pair <math>(j,k)</math>, <math>\xi_i^{(j,k)}=\eps_{i,j}\eps_{i,k}</math>, so that <math>\xi_1^{(j,k)}, \ldots, \xi_n^{(j,k)}</math> are \iid Rademacher random variables. | |||
Therefore, we get that for any <math>t > 0</math>, | |||
<math display="block"> | |||
\begin{align*} | |||
\p\left(\left|\frac{\X^\top \X}{n}-I_d\right|_\infty > t\right) &=\p\Big(\max_{j\neq k}\Big|\frac{1}{n}\sum_{i=1}^n \xi_{i}^{(j,k)}\Big| > t\Big)&\\ | |||
&\le \sum_{j\neq k}\p\Big(\Big|\frac{1}{n}\sum_{i=1}^n \xi_{i}^{(j,k)}\Big| > t\Big)&\text{(Union bound)}\\ | |||
&\le \sum_{j\neq k}2e^{-\frac{nt^2}{2}}&\text{(Hoeffding: Theorem~[[guide:0251dfcdad#TH:hoeffding |Sub-Gaussian Random Variables]])}\\ | |||
&\le 2 d^2e^{-\frac{nt^2}{2}}. | |||
\end{align*} | |||
</math> | |||
Taking now <math>t=1/(32k)</math> yields | |||
<math display="block"> | |||
\p\big(\big|\frac{\X^\top \X}{n}-I_d\big|_\infty > \frac{1}{32k}\big)\le 2 d^2e^{-\frac{n}{2^{11}k^2}} \le \delta | |||
</math> | |||
for | |||
<math display="block"> | |||
\begin{equation*} | |||
n\ge 2^{11}k^2\log(1/\delta)+2^{13}k^2\log(d)\,. \qedhere | |||
\end{equation*} | |||
</math>}} | |||
\medskip | |||
For any <math>\theta \in \R^d</math>, <math>S\subset\{1, \ldots, d\}</math>, define <math>\theta_S</math> to be the vector with coordinates | |||
<math display="block"> | |||
\theta_{S,j}=\left\{\begin{array}{ll} | |||
\theta_{j} & \text{if} \ j \in S\,,\\ | |||
0&\text{otherwise}\,. | |||
\end{array}\right. | |||
</math> | |||
In particular <math>|\theta|_1=|\theta_S|_1+|\theta_{S^c}|_1</math>. | |||
The following lemma holds | |||
{{proofcard|Lemma|lem:inc|Fix a positive integer <math>k \le d</math> and assume that <math>\X</math> satisfies assumption <math>\mathsf{INC}(k)</math>. Then, for any <math>S \in \{1, \ldots, d\}</math> such that <math>|S|\le k</math> and any <math>\theta \in \R^d</math> that satisfies the ''cone condition'' | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:conecond} | |||
|\theta_{S^c}|_1 \le 3|\theta_S|_1\,, | |||
\end{equation} | |||
</math> | |||
it holds | |||
<math display="block"> | |||
|\theta|^2_2 \le 2\frac{|\X\theta|_2^2}n. | |||
</math> | |||
|We have | |||
<math display="block"> | |||
\frac{|\X\theta|_2^2}n = \frac{|\X\theta_S|_2^2}{n} +\frac{|\X\theta_{S^c}|_2^2}{n}+2\theta_S^\top \frac{\X^\top\X}{n}\theta_{S^c}. | |||
</math> | |||
We bound each of the three terms separately. | |||
<ul style{{=}}"list-style-type:lower-roman"><li>First, if follows from the incoherence condition that | |||
<math display="block"> | |||
\frac{|\X\theta_S|_2^2}{n}=\theta_S^\top \frac{\X^\top\X}{n}\theta_S =|\theta_S|_2^2+\theta_S^\top \left(\frac{\X^\top\X}{n} - I_d\right)\theta_S \ge |\theta_S|_2^2-\frac{|\theta_S|_1^2}{32k}\,, | |||
</math></li> | |||
<li>Similarly, | |||
<math display="block"> | |||
\frac{|\X\theta_{S^c}|_2^2}{n} \ge |\theta_{S^c}|_2^2-\frac{|\theta_{S^c}|_1^2}{32k}\ge |\theta_{S^c}|_2^2-\frac{9|\theta_{S}|_1^2}{32k}\,, | |||
</math> | |||
where, in the last inequality, we used the cone condition~\eqref{EQ:conecond}.</li> | |||
<li>Finally, | |||
<math display="block"> | |||
2\Big|\theta_S^\top \frac{ \X^\top\X}{n}\theta_{S^c}\Big|\le \frac{2}{32k}|\theta_S|_1|\theta_{S^c}|_1\le \frac{6}{32k}|\theta_S|_1^2. | |||
</math> | |||
where, in the last inequality, we used the cone condition~\eqref{EQ:conecond}.\</li> | |||
</ul> | |||
Observe now that it follows from the Cauchy-Schwarz inequality that | |||
<math display="block"> | |||
|\theta_S|_1^2 \le |S||\theta_S|_2^2. | |||
</math> | |||
Thus for <math>|S|\le k</math>, | |||
<math display="block"> | |||
\begin{equation*} | |||
\frac{|\X\theta|_2^2}{n} \ge |\theta_S|_2^2 +|\theta_{S^c}|_2^2- \frac{16|S|}{32k}|\theta_S|_2^2 \ge \frac12|\theta|_2^2. \qedhere | |||
\end{equation*} | |||
</math>}} | |||
====Fast rate for the Lasso==== | |||
{{proofcard|Theorem|TH:lasso_fast|Fix <math>n \ge 2</math>. Assume that the linear model~\eqref{EQ:regmod_matrix} holds where <math>\eps\sim \sg_n(\sigma^2)</math>. Moreover, assume that <math>|\theta^*|_0\le k</math> and that <math>\X</math> satisfies assumption \textsf{INC$(k)$}. Then the Lasso estimator <math>\thetalasso</math> with regularization parameter defined by | |||
<math display="block"> | |||
2\tau=8\sigma\sqrt{\frac{\log(2d)}{n}}+8\sigma\sqrt{\frac{\log(1/\delta)}{n}} | |||
</math> | |||
satisfies | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:fastMSELasso} | |||
\MSE(\X\thetalasso)=\frac{1}{n}|\X\thetalasso-\X\theta^*|_2^2\lesssim k\sigma^2\frac{\log(2d/\delta)}{n} | |||
\end{equation} | |||
</math> | |||
and | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:bornel2lasso} | |||
|\thetalasso-\theta^*|_2^2\lesssim k\sigma^2\frac{\log(2d/\delta)}{n}\,.\end{equation} | |||
</math> | |||
with probability at least <math>1-\delta</math>. | |||
|From the definition of <math>\thetalasso</math>, it holds | |||
<math display="block"> | |||
\frac1n|Y-\X\thetalasso|_2^2 \le \frac1n|Y-\X\theta^*|_2^2 + 2\tau|\theta^*|_1- 2\tau|\thetalasso|_1 \,. | |||
</math> | |||
Adding <math>\tau|\thetalasso-\theta^*|_1</math> on each side and multiplying by <math>n</math>, we get | |||
<math display="block"> | |||
|\X\thetalasso-\X\theta^*|_2^2+n\tau|\thetalasso-\theta^*|_1 \le2\eps^\top\X(\thetalasso-\theta^*) +n\tau|\thetalasso-\theta^*|_1+ 2n\tau|\theta^*|_1- 2n\tau|\thetalasso|_1 \,. | |||
</math> | |||
Applying H\"older's inequality and using the same steps as in the proof of Theorem~[[#TH:lasso_slow |Linear Regression Model]], we get that with probability <math>1-\delta</math>, we get | |||
<math display="block"> | |||
\begin{align*} | |||
\eps^\top\X(\thetalasso-\theta^*)&\le|\eps^\top\X|_\infty|\thetalasso-\theta^*|_1\\ | |||
&\le \frac{n\tau}2|\thetalasso-\theta^*|_1\,, | |||
\end{align*} | |||
</math> | |||
where we used the fact that <math>|\X_j|_2^2 \le n + 1/(32k) \le 2n</math>. | |||
Therefore, taking <math>S=\supp(\theta^*)</math> to be the support of <math>\theta^*</math>, we get | |||
<math display="block"> | |||
\begin{align} | |||
|\X\thetalasso-\X\theta^*|_2^2 +n\tau|\thetalasso-\theta^*|_1 &\le 2n\tau|\thetalasso-\theta^*|_1+2n\tau|\theta^*|_1- 2n\tau|\thetalasso|_1\nonumber \\ | |||
&= 2n\tau|\thetalasso_S-\theta^*|_1+2n\tau|\theta^*|_1- 2n\tau|\thetalasso_S|_1\nonumber\\ | |||
&\le 4n\tau|\thetalasso_S-\theta^*|_1. \label{EQ:pr:lassofast1} | |||
\end{align} | |||
</math> | |||
In particular, it implies that | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:conefordelta} | |||
|\thetalasso_{S^c}-\theta_{S^c}^*|_1\le 3 |\thetalasso_{S}-\theta_{S}^*|_1\,. | |||
\end{equation} | |||
</math> | |||
so that <math>\theta=\thetalasso-\theta^*</math> satisfies the cone condition~\eqref{EQ:conecond}. | |||
Using now the Cauchy-Schwarz inequality and Lemma~[[#lem:inc |Linear Regression Model]] respectively, we get, since <math>|S|\le k</math>, | |||
<math display="block"> | |||
|\thetalasso_S-\theta^*|_1 \le \sqrt{|S|}|\thetalasso_S-\theta^*|_2 \le \sqrt{|S|}|\thetalasso-\theta^*|_2 \le\sqrt{\frac{2k}{n}}|\X\thetalasso-\X\theta^*|_2\,. | |||
</math> | |||
Combining this result with~\eqref{EQ:pr:lassofast1}, we find | |||
<math display="block"> | |||
|\X\thetalasso-\X\theta^*|_2^2 \le 32nk\tau^2\,. | |||
</math> | |||
This concludes the proof of the bound on the MSE. | |||
To prove~\eqref{EQ:bornel2lasso}, we use Lemma~[[#lem:inc |Linear Regression Model]] once again to get | |||
<math display="block"> | |||
\begin{equation*} | |||
|\thetalasso -\theta^*|_2^2\le 2\MSE(\X\thetalasso)\le 64k\tau^2. \qedhere | |||
\end{equation*} | |||
</math>}} | |||
Note that all we required for the proof was not really incoherence but the conclusion of Lemma~[[#lem:inc |Linear Regression Model]]: | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:REcond} | |||
\inf_{|S|\le k}\inf_{\theta \in \cC_S}\frac{|\X\theta|_2^2}{n|\theta|^2_2}\ge \kappa, | |||
\end{equation} | |||
</math> | |||
where <math>\kappa=1/2</math> and <math>\cC_S</math> is the cone defined by | |||
<math display="block"> | |||
\cC_S=\big\{ |\theta_{S^c}|_1 \le 3|\theta_S|_1 \big\}\,. | |||
</math> | |||
Condition~\eqref{EQ:REcond} is sometimes called ''restricted eigenvalue (RE) condition''. Its name comes from the following observation. Note that all <math>k</math>-sparse vectors <math>\theta</math> are in a cone <math>\cC_{S}</math> with <math>|S|\le k</math> so that the RE condition implies that the smallest eigenvalue of <math>\X_S</math> satisfies | |||
<math>\lambda_\textrm{min}(\X_S)\ge n\kappa</math> for all <math>S</math> such that <math>|S|\le k</math>. Clearly, the RE condition is weaker than incoherence and it can actually be shown that a design matrix <math>\X</math> of \iid Rademacher random variables satisfies the RE conditions as soon as <math>n\ge Ck\log(d)</math> with positive probability. | |||
===The Slope estimator=== | |||
We noticed that the BIC estimator can actually obtain a rate of <math> k\log(ed/k) </math>, where <math> k = |\theta^\ast|_0 </math>, while the LASSO only achieves <math> k \log(ed) </math>. | |||
This begs the question whether the same rate can be achieved by an efficiently computable estimator. | |||
The answer is yes, and the estimator achieving this is a slight modification of the LASSO, where the entries in the <math> \ell_1 </math>-norm are weighted differently according to their size in order to get rid of a slight inefficiency in our bounds. | |||
{{defncard|label=Slope estimatorid=| Let <math> \lambda = (\lambda_1, \dots, \lambda_d) </math> be a non-increasing sequence of positive real numbers, <math> \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d > 0 </math>. | |||
For <math> \theta = (\theta_1, \dots, \theta_d) \in \R^d </math>, let <math> (\theta^\ast_1, \dots, \theta^\ast_d) </math> be a non-increasing rearrangement of the modulus of the entries, <math> |\theta_1|, \dots, |\theta_d| </math>. | |||
We define the ''sorted <math> \ell_1 </math> norm of <math> \theta </math>'' as | |||
<math display="block"> | |||
\begin{equation} | |||
|\theta|_\ast = \sum_{j=1}^{d} \lambda_j \theta^\ast_j, | |||
\end{equation} | |||
</math> | |||
or equivalently as | |||
<math display="block"> | |||
\begin{equation} | |||
|\theta|_\ast = \max_{\phi \in S_d} \sum_{j=1}^{d} \lambda_j | \theta_{\phi(j)} |. | |||
\end{equation} | |||
</math> | |||
The ''Slope estimator'' is then given by | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:ad} | |||
\thetaslope \in \argmin_{\theta \in \R^d} \{ \frac{1}{n} | Y - \X \theta|_2^2 + 2 \tau | \theta |_\ast \} | |||
\end{equation} | |||
</math> | |||
for a choice of tuning parameters <math> \lambda </math> and <math> \tau > 0 </math>. | |||
}} | |||
Slope stands for Sorted L-One Penalized Estimation and was introduced in <ref name="BogvanSab15">{{cite journal|last1=Bogdan|first1=Ma{\l}gorzata|last2={van den Berg}|first2=Ewout|last3=Sabatti|first3=Chiara|last4=Su|first4=Weijie|first5=C|last6={\`e}s|first6=Emmanuel J.|journal=The annals of applied statistics|year=2015|title={{SLOPE}}\textemdash{}adaptive Variable Selection via Convex Optimization|volume=9|number=3}}</ref>, motivated by the quest for a penalized estimation procedure that could offer a control of false discovery rate for the hypotheses <math> H_{0,j}: \theta^\ast_j = 0 </math>. | |||
We can check that <math> |\,.\,|_\ast </math> is indeed a norm and that <math> \thetaslope </math> can be computed efficiently, for example by proximal gradient algorithms, see <ref name="BogvanSab15">{{cite journal|last1=Bogdan|first1=Ma{\l}gorzata|last2={van den Berg}|first2=Ewout|last3=Sabatti|first3=Chiara|last4=Su|first4=Weijie|first5=C|last6={\`e}s|first6=Emmanuel J.|journal=The annals of applied statistics|year=2015|title={{SLOPE}}\textemdash{}adaptive Variable Selection via Convex Optimization|volume=9|number=3}}</ref>. | |||
In the following, we will consider | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:ab} | |||
\lambda_j = \sqrt{\log (2d/j)}, \quad j = 1, \dots, d. | |||
\end{equation} | |||
</math> | |||
With this choice, we will exhibit a scaling in <math> \tau </math> that leads to the desired high probability bounds, following the proofs in <ref name="BelLecTsy16">{{cite journal|last1=Bellec|first1=Pierre C.|last2=Lecu{\'e}|first2=Guillaume|last3=Tsybakov|first3=Alex|last4=re|first4=B.|journal=arXiv preprint arXiv:1605.08651|year=2016|title=Slope Meets Lasso: Improved Oracle Bounds and Optimality}}</ref>. | |||
We begin with refined bounds on the suprema of Gaussians. | |||
{{proofcard|Lemma|lem:a|Let <math> g_1, \dots, g_d </math> be zero-mean Gaussian variables with variance at most <math> \sigma^2 </math>. | |||
Then, for any <math>k\le d</math>, | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:j} | |||
\p\left(\frac{1}{k \sigma^2} \sum_{j = 1}^{k} (g_j^\ast)^2 > t \log \left( \frac{2d}{k} \right) \right) \leq \left( \frac{2d}{k} \right)^{1-3t/8}. | |||
\end{equation} | |||
</math> | |||
|We consider the moment generating function to apply a Chernoff bound. | |||
Use Jensen's inequality on the sum to get | |||
<math display="block"> | |||
\begin{align*} | |||
\label{eq:j} | |||
\E \exp \left( \frac{3}{8 k \sigma^2} \sum_{j=1}^{k} (g^\ast_j)^2 \right) | |||
\leq {} & \frac{1}{k} \sum_{j=1}^{k} \E \exp \left( \frac{3 (g_j^\ast)^2}{8 \sigma^2} \right)\\ | |||
\leq {} & \frac{1}{k} \sum_{j=1}^{d} \E \exp \left( \frac{3 g_j^2}{8 \sigma^2} \right)\\ | |||
\leq {} & \frac{2d}{k}, | |||
\end{align*} | |||
</math> | |||
where we used the bound on the moment generating function of the <math> \chi^2 </math> distribution from Problem [[guide:0251dfcdad#EXO:chi2 |Sub-Gaussian Random Variables]] to get that <math> \E[\exp(3g^2/8)] = 2 </math> for <math> g \sim \cN(0,1) </math>. | |||
The rest follows from a Chernoff bound.}} | |||
{{proofcard|Lemma|lem:b|Define <math>[d]:=\{1, \ldots, d\}</math>. Under the same assumptions as in Lemma [[#lem:a |Linear Regression Model]], | |||
<math display="block"> | |||
\begin{equation} | |||
\sup_{k \in [d]} \frac{(g^\ast_k)}{\sigma \lambda_k} \leq 4 \sqrt{\log(1/\delta)}, | |||
\end{equation} | |||
</math> | |||
with probability at least <math> 1 - \delta </math>, for <math> \delta < \frac{1}{2} </math>. | |||
|We can estimate <math> (g^\ast_k)^2 </math> by the average of all larger variables, | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:m} | |||
(g^\ast_k)^2 \leq \frac{1}{k} \sum_{j=1}^{k} (g^\ast_j)^2. | |||
\end{equation} | |||
</math> | |||
Applying Lemma [[#lem:a |Linear Regression Model]] yields | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:n} | |||
\p\left(\frac{(g^\ast_k)^2}{\sigma^2 \lambda_k^2} > t\right) \leq \left( \frac{2d}{k} \right)^{1-3t/8} | |||
\end{equation} | |||
</math> | |||
For <math> t > 8 </math>, | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:o} | |||
\p \left( \sup_{k \in [d]} \frac{(g^\ast_k)^2}{\sigma^2 \lambda_k^2} > t \right) | |||
\leq {} & \sum_{j=1}^{d} \left( \frac{2d}{j} \right)^{1-3t/8}\\ | |||
\leq {} & (2d)^{1-3t/8} \sum_{j=1}^{d} \frac{1}{j^2}\\ | |||
\leq {} & 4 \cdot 2^{-3t/8}. | |||
\end{align} | |||
</math> | |||
In turn, this means that | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:p} | |||
\sup_{k \in [d]} \frac{(g^\ast_k)}{\sigma \lambda_k} \leq 4 \sqrt{\log(1/\delta)}, | |||
\end{equation} | |||
</math> | |||
for <math> \delta \leq 1/2 </math>.}} | |||
{{proofcard|Theorem|thm-1|Fix <math>n \ge 2</math>. Assume that the linear model~\eqref{EQ:regmod_matrix} holds where <math>\eps\sim \cN_n(0,\sigma^2 I_n)</math>. Moreover, assume that <math>|\theta^*|_0\le k</math> and that <math>\X</math> satisfies assumption \textsf{INC$(k')$} with <math> k' \geq 4k \log(2de/k) </math>. Then the Slope estimator <math>\thetaslope</math> with regularization parameter defined by | |||
<math display="block"> | |||
\begin{equation} | |||
\tau = 8 \sqrt{2} \sigma \sqrt{\frac{\log(1/\delta)}{n}} | |||
\end{equation} | |||
</math> | |||
satisfies | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:fastMSESlope} | |||
\MSE(\X\thetaslope)=\frac{1}{n}|\X\thetaslope-\X\theta^*|_2^2 | |||
\lesssim \sigma^2\frac{k\log(2d/k) \log(1/\delta)}{n} | |||
\end{equation} | |||
</math> | |||
and | |||
<math display="block"> | |||
\begin{equation} | |||
\label{EQ:fastL2slope} | |||
|\thetaslope-\theta^*|_2^2\lesssim \sigma^2\frac{k\log(2d/k) \log(1/\delta)}{n}\,.\end{equation} | |||
</math> | |||
with probability at least <math>1-\delta</math>. | |||
{{alert-info | | |||
The multplicative depedence on <math> \log(1/\delta) </math> in \eqref{EQ:fastMSESlope} is an artifact of the simplified proof we give here and can be improved to an additive one similar to the lasso case, \eqref{EQ:fastMSELasso}, by appealing to stronger and more general concentration inequalities. | |||
For more details, see <ref name="BelLecTsy16">{{cite journal|last1=Bellec|first1=Pierre C.|last2=Lecu{\'e}|first2=Guillaume|last3=Tsybakov|first3=Alex|last4=re|first4=B.|journal=arXiv preprint arXiv:1605.08651|year=2016|title=Slope Meets Lasso: Improved Oracle Bounds and Optimality}}</ref>. | |||
}} | |||
|By minimality of <math> \thetaslope </math> in \eqref{eq:ad}, adding <math> n \tau |\thetaslope - \theta^\ast|_\ast </math> on both sides, | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:r} | |||
|\X\thetaslope-\X\theta^*|_2^2+n \tau |\thetaslope-\theta^*|_\ast | |||
\leq 2\eps^\top\X(\thetaslope-\theta^*) +n \tau |\thetaslope-\theta^*|_\ast+ 2 \tau n|\theta^*|_\ast- 2 \tau n|\thetaslope|_\ast \,. | |||
\end{equation} | |||
</math> | |||
Set | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:l} | |||
u := \thetaslope - \theta^\ast, \quad g_j = (\X^\top \varepsilon)_j, | |||
\end{equation} | |||
</math> | |||
By Lemma [[#lem:b |Linear Regression Model]], we can estimate | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:k} | |||
\varepsilon^\top \X u = {} & \sum_{j = 1}^{d} (\X^\top \varepsilon)_j u_j | |||
\leq \sum_{j = 1}^{d} g^\ast_j u^\ast_j\\ | |||
= {} & \sum_{j=1}^{d} \frac{g^\ast_j}{\lambda_j} (\lambda_j u^\ast_j)\\ | |||
\leq {} & \sup_{j} \left\{ \frac{g^\ast_j}{\lambda_j} \right\} | u |_\ast\\ | |||
\leq {} & 4 \sqrt{2} \sigma \sqrt{n \log(1/\delta)} | u |_\ast | |||
= \frac{n \tau}{2} |u|_\ast, | |||
\end{align} | |||
</math> | |||
where we used that <math> |\X_j|_2^2 \leq 2n </math>. | |||
Pick a permutation <math> \phi </math> such that <math> | \theta^\ast |_\ast = \sum_{j = 1}^{k} \lambda_j | \theta_{\phi(j)} | </math> and <math> | u_{\phi(k+1)} | \geq \dots \geq | u_{\phi(d)}| </math>. | |||
Then, noting that <math> \lambda_j </math> is monotonically decreasing, | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:q} | |||
| \theta^\ast |_\ast - | \thetaslope |_\ast | |||
= {} & \sum_{j=1}^{k} \lambda_j | \theta^\ast_{\phi(j)}| - \sum_{j = 1}^{d} \lambda_j (\thetaslope)^\ast_j\\ | |||
\leq {} & \sum_{j=1}^{k} \lambda_j ( | \theta^\ast_{\phi(j)} | - | \thetaslope_{\phi(j)} |) - \sum_{j=k+1}^{d} \lambda_j | \thetaslope_{\phi(j)} |\\ | |||
\leq {} & \sum_{j=1}^{k} \lambda_j | u_{\phi(j)} | - \sum_{j=k+1}^{d} \lambda_j u^\ast_j \\ | |||
\leq {} & \sum_{j=1}^{k} \lambda_j u^\ast_{j} - \sum_{j=k+1}^{d} \lambda_j u^\ast_j. | |||
\end{align} | |||
</math> | |||
Combined with <math> \tau = 8 \sqrt{2} \sigma \sqrt{\log(1/\delta)/n} </math> and the basic inequality \eqref{eq:r}, we have that | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:s} | |||
|\X\thetaslope-\X\theta^*|_2^2+n \tau |u|_\ast | |||
\leq {} & 2n \tau |u|_\ast + 2 \tau n |\theta^*|_\ast- 2 \tau n|\thetaslope|_\ast\\ | |||
\leq {} & 4 n \tau \sum_{j=1}^{k} \lambda_j u^\ast_j, \label{eq:w} | |||
\end{align} | |||
</math> | |||
whence | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:t} | |||
\sum_{j=k+1}^{d} \lambda_j u^\ast_j \leq 3 \sum_{j=1}^{k} \lambda_j u^\ast_j. | |||
\end{equation} | |||
</math> | |||
We can now repeat the incoherence arguments from Lemma [[#lem:inc |Linear Regression Model]], with <math> S </math> being the <math> k </math> largest entries of <math> |u| </math>, to get the same conclusion under the restriction <math> \textsf{INC}(k') </math>. | |||
First, by exactly the same argument as in Lemma [[#lem:inc |Linear Regression Model]], we have | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:ah} | |||
\frac{|\X u_{S}|_2^2}{n} \ge | u_S |_2^2 - \frac{| u_{S} |_1^2}{32 k'} | |||
\ge | u_S |_2^2 - \frac{k}{32 k'} | u_S |_2^2. | |||
\end{equation} | |||
</math> | |||
Next, for the cross terms, we have | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:u} | |||
2\Big|u_S^\top \frac{ \X^\top\X}{n}u_{S^c}\Big| | |||
\leq {} & \frac{2}{32k'} \sum_{i=1}^{k} u^\ast_i \sum_{j=k+1}^{d} u^\ast_j\\ | |||
= {} & \frac{2}{32k'} \sum_{i=1}^{k} u^\ast_i \sum_{j=k+1}^{d} \frac{\lambda_j}{\lambda_j} u^\ast_j\\ | |||
\leq {} & \frac{2}{32k' \lambda_d} \sum_{i=1}^{k} u^\ast_i \sum_{j=k+1}^{d} \lambda_j u^\ast_j\\ | |||
\leq {} & \frac{6}{32k' \lambda_d} \sum_{i=1}^{k} u^\ast_i \sum_{j=1}^{k} \lambda_j u^\ast_j\\ | |||
\leq {} & \frac{6 \sqrt{k}}{32k' \lambda_d} \left(\sum_{i=1}^{k} \lambda_j^2\right)^{1/2} \sum_{i=1}^{k} (u^\ast_i)^2\\ | |||
\leq {} & \frac{6 k}{32k' \lambda_d} \sqrt{\log (2de/k)} | u_S |_2^2. | |||
\end{align} | |||
</math> | |||
where we estimated the sum by | |||
<math display="block"> | |||
\begin{align} | |||
\sum_{j=1}^{k} \log \left( \frac{2d}{j} \right) | |||
= {} & k \log(2d) - \log(k!) | |||
\leq k \log(2d) - k \log(k/e)\\ | |||
= {} & k \log(2de/k), | |||
\end{align} | |||
</math> | |||
using Stirling's inequality, <math> k! \geq (k/e)^k </math>. | |||
Finally, from a similar calculation, using the cone condition twice, | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:v} | |||
\frac{|\X u_{S^c}|_2^2}{n} \ge |u_{S^c}|_2^2-\frac{9k}{32k' \lambda_d^2} \log(2de/k) |u_S|_2^2. | |||
\end{equation} | |||
</math> | |||
Concluding, if <math> \textsf{INC}( k') </math> holds with <math> k' \geq 4k \log(2de/k) </math>, taking into account that <math> \lambda_d \ge 1/2 </math>, we have | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:ak} | |||
\frac{| \X u |_2^2}{n} \ge | u_S |_2^2 + | u_{S^c} |_2^2 - \frac{36 + 12 + 1}{128} | u_S |_2^2 \ge \frac{1}{2} | u |_2^2. | |||
\end{equation} | |||
</math> | |||
Hence, from \eqref{eq:w}, | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:x} | |||
|\X u|_2^2+n \tau |u|_\ast | |||
\leq {} & 4 n \tau \left( \sum_{j=1}^{k} \lambda_j^2 \right)^{1/2} \left( \sum_{j=1}^{k} (u^\ast_j)^2 \right)^{1/2}\\ | |||
\leq {} & 4 \sqrt{2} \tau \sqrt{n k \log (2de/k)} | \X u |_2\\ | |||
= {} & 2^6 \sigma \sqrt{\log(1/\delta)} \sqrt{k \log(2de/k)} | \X u |_2, | |||
\end{align} | |||
</math> | |||
which combined yields | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:y} | |||
\frac{1}{n} | \X u |_2^2 \leq 2^{12} \sigma^2 \frac{k}{n} \log(2de/k) \log(1/\delta), | |||
\end{equation} | |||
</math> | |||
and | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:z} | |||
|u|_2^2 \leq 2^{13} \frac{k}{n} \sigma^2 \log(2de/k) \log(1/\delta). \qedhere | |||
\end{equation} | |||
</math>}} | |||
==Problem set== | |||
==General references== | |||
{{cite arXiv|last1=Rigollet|first1=Philippe|last2=Hütter|first2=Jan-Christian|year=2023|title=High-Dimensional Statistics|eprint=2310.19244|class=math.ST}} | |||
==Notes== | |||
{{Reflist|group=Notes}} | |||
==References== | |||
{{reflist}} |
Revision as of 15:13, 21 May 2024
[math] \newcommand{\DS}{\displaystyle} \newcommand{\intbeta}{\lfloor \beta \rfloor} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\sg}{\mathsf{subG}} \newcommand{\subE}{\mathsf{subE}} \newcommand{\bA}{\mathbf{A}} \newcommand{\bB}{\mathbf{B}} \newcommand{\bC}{\mathbf{C}} \newcommand{\bD}{\mathbf{D}} \newcommand{\bE}{\mathbf{E}} \newcommand{\bF}{\mathbf{F}} \newcommand{\bG}{\mathbf{G}} \newcommand{\bH}{\mathbf{H}} \newcommand{\bI}{\mathbf{I}} \newcommand{\bJ}{\mathbf{J}} \newcommand{\bK}{\mathbf{K}} \newcommand{\bM}{\mathbf{M}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bO}{\mathbf{O}} \newcommand{\bP}{\mathbf{P}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bQ}{\mathbf{Q}} \newcommand{\bS}{\mathbf{S}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bU}{\mathbf{U}} \newcommand{\bV}{\mathbf{V}} \newcommand{\bX}{\mathbf{X}} \newcommand{\bY}{\mathbf{Y}} \newcommand{\bZ}{\mathbf{Z}} \newcommand{\bflambda}{\boldsymbol{\lambda}} \newcommand{\bftheta}{\boldsymbol{\theta}} \newcommand{\bfg}{\boldsymbol{g}} \newcommand{\bfy}{\boldsymbol{y}} \def\thetaphat{\hat{\bftheta}_\bp} \def\bflam{\boldsymbol{\lambda}} \def\Lam{\Lambda} \def\lam{\lambda} \def\bfpi{\boldsymbol{\pi}} \def\bfz{\boldsymbol{z}} \def\bfw{\boldsymbol{w}} \def\bfeta{\boldsymbol{\eta}} \newcommand{\R}{\mathrm{ I}\kern-0.18em\mathrm{ R}} \newcommand{\h}{\mathrm{ I}\kern-0.18em\mathrm{ H}} \newcommand{\K}{\mathrm{ I}\kern-0.18em\mathrm{ K}} \newcommand{\p}{\mathrm{ I}\kern-0.18em\mathrm{ P}} \newcommand{\E}{\mathrm{ I}\kern-0.18em\mathrm{ E}} %\newcommand{\Z}{\mathrm{ Z}\kern-0.26em\mathrm{ Z}} \newcommand{\1}{\mathrm{ 1}\kern-0.24em\mathrm{ I}} \newcommand{\N}{\mathrm{ I}\kern-0.18em\mathrm{ N}} \newcommand{\field}[1]{\mathbb{#1}} \newcommand{\q}{\field{Q}} \newcommand{\Z}{\field{Z}} \newcommand{\X}{\field{X}} \newcommand{\Y}{\field{Y}} \newcommand{\bbS}{\field{S}} \newcommand{\n}{\mathcal{N}} \newcommand{\x}{\mathcal{X}} \newcommand{\pp}{{\sf p}} \newcommand{\hh}{{\sf h}} \newcommand{\ff}{{\sf f}} \newcommand{\Bern}{\mathsf{Ber}} \newcommand{\Bin}{\mathsf{Bin}} \newcommand{\Lap}{\mathsf{Lap}} \newcommand{\tr}{\mathsf{Tr}} \newcommand{\phin}{\varphi_n} \newcommand{\phinb}{\overline \varphi_n(t)} \newcommand{\pn}{\p_{\kern-0.25em n}} \newcommand{\pnm}{\p_{\kern-0.25em n,m}} \newcommand{\psubm}{\p_{\kern-0.25em m}} \newcommand{\psubp}{\p_{\kern-0.25em p}} \newcommand{\cfi}{\cF_{\kern-0.25em \infty}} \newcommand{\e}{\mathrm{e}} \newcommand{\ic}{\mathrm{i}} \newcommand{\Leb}{\mathrm{Leb}_d} \newcommand{\Var}{\mathrm{Var}} \newcommand{\ddelta}{d_{\symdiffsmall}} \newcommand{\dsubh}{d_H} \newcommand{\indep}{\perp\kern-0.95em{\perp}} \newcommand{\supp}{\mathop{\mathrm{supp}}} \newcommand{\rank}{\mathop{\mathrm{rank}}} \newcommand{\vol}{\mathop{\mathrm{vol}}} \newcommand{\conv}{\mathop{\mathrm{conv}}} \newcommand{\card}{\mathop{\mathrm{card}}} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\argmax}{\mathop{\mathrm{argmax}}} \newcommand{\ud}{\mathrm{d}} \newcommand{\var}{\mathrm{var}} \newcommand{\re}{\mathrm{Re}} \newcommand{\MSE}{\mathsf{MSE}} \newcommand{\im}{\mathrm{Im}} \newcommand{\epr}{\hfill\hbox{\hskip 4pt\vrule width 5pt height 6pt depth 1.5pt}\vspace{0.5cm}\par} \newcommand{\bi}[1]{^{(#1)}} \newcommand{\eps}{\varepsilon} \newcommand{\Deq}{\stackrel{\mathcal{D}}{=}} \newcommand{\ubar}{\underbar} \newcommand{\Kbeta}{K_{\hspace{-0.3mm} \beta}} \newcommand{\crzero}[1]{\overset{r_0}{\underset{#1}{\longleftrightarrow}}} \newcommand{\hint}[1]{\texttt{[Hint:#1]}} \newcommand{\vp}{\vspace{.25cm}} \newcommand{\vm}{\vspace{.5cm}} \newcommand{\vg}{\vspace{1cm}} \newcommand{\vgneg}{\vspace{-1cm}} \newcommand{\vneg}{\vspace{-.5cm}} \newcommand{\vpneg}{\vspace{-.25cm}} \newcommand{\tp}{\ptsize{10}} \newcommand{\douzp}{\ptsize{12}} \newcommand{\np}{\ptsize{9}} \newcommand{\hp}{\ptsize{8}} \newcommand{\red}{\color{red}} \newcommand{\ndpr}[1]{{\textsf{\red[#1]}}} \newcommand\iid{i.i.d\@ifnextchar.{}{.\@\xspace} } \newcommand\MoveEqLeft[1][2]{\kern #1em & \kern -#1em} \newcommand{\leadeq}[2][4]{\MoveEqLeft[#1] #2 \nonumber} \newcommand{\leadeqnum}[2][4]{\MoveEqLeft[#1] #2} \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} \newcommand{\MIT}[1]{{\color{MITred} #1}} \newcommand{\dHyp}{\{-1,1\}^d} \newcommand{\thetahard}{\hat \theta^{hrd}} \newcommand{\thetasoft}{\hat \theta^{sft}} \newcommand{\thetabic}{\hat \theta^{bic}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetahard}{\hat \theta^{hrd}} \newcommand{\thetasoft}{\hat \theta^{sft}} \newcommand{\thetabic}{\hat \theta^{bic}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetals}{\hat \theta^{ls}} \newcommand{\thetalsm}{\tilde \theta^{ls_X}} \newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} \newcommand{\thetalsK}{\hat \theta^{ls}_K} \newcommand{\muls}{\hat \mu^{ls}} [/math]
\label{chap:GSM}
\newcommand{\thetahard}{\hat \theta^{\textsc{hrd}}} \newcommand{\thetasoft}{\hat \theta^{\textsc{sft}}} \newcommand{\thetabic}{\hat \theta^{\textsc{bic}}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetals}{\hat \theta^{\textsc{ls}}} \newcommand{\thetalsm}{\tilde \theta^{\textsc{ls}}_X} \newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} \newcommand{\thetalsK}{\hat \theta^{\textsc{ls}}_K} \newcommand{\muls}{\hat \mu^{\textsc{ls}}}
In this chapter, we consider the following regression model:
where [math]\eps=(\eps_1, \ldots, \eps_n)^\top [/math] is sub-Gaussian with variance proxy [math]\sigma^2[/math] and such that [math]\E[\eps]=0[/math]. Our goal is to estimate the function [math]f[/math] under a linear assumption. Namely, we assume that [math]x \in \R^d[/math] and [math]f(x)=x^\top\theta^*[/math] for some unknown [math]\theta^* \in \R^d[/math].
Fixed design linear regression
Depending on the nature of the design points [math]X_1, \ldots, X_n[/math], we will favor a different measure of risk. In particular, we will focus either on fixed or random design.
Random design
The case of random design corresponds to the statistical learning setup. Let [math](X_1,Y_1), \ldots, (X_{n+1}, Y_{n+1})[/math] be [math]n+1[/math] \iid random couples. Given the pairs [math](X_1,Y_1), \ldots, (X_{n}, Y_{n})[/math], the goal is construct a function [math]\hat f_n[/math] such that [math]\hat f_n(X_{n+1})[/math] is a good predictor of [math]Y_{n+1}[/math]. Note that when [math]\hat f_n[/math] is constructed, [math]X_{n+1}[/math] is still unknown and we have to account for what value it is likely to take. Consider the following example from~[1](Section~3.2). The response variable [math]Y[/math] is the log-volume of a cancerous tumor, and the goal is to predict it based on [math]X \in \R^6[/math], a collection of variables that are easier to measure (age of patient, log-weight of prostate, \ldots). Here the goal is clearly to construct [math]f[/math] for prediction purposes. Indeed, we want to find an automatic mechanism that outputs a good prediction of the log-weight of the tumor given certain inputs for a new (unseen) patient.
A natural measure of performance here is the [math]L_2[/math]-risk employed in the introduction:
where [math]P_X[/math] denotes the marginal distribution of [math]X_{n+1}[/math]. It measures how good the prediction of [math]Y_{n+1}[/math] is in average over realizations of [math]X_{n+1}[/math]. In particular, it does not put much emphasis on values of [math]X_{n+1}[/math] that are not very likely to occur. Note that if the [math]\eps_i[/math] are random variables with variance [math]\sigma^2[/math], then one simply has [math]R(\hat f_n)=\sigma^2+\|\hat f_n -f\|^2_{L^2(P_X)}[/math]. Therefore, for random design, we will focus on the squared [math]L_2[/math] norm [math]\|\hat f_n -f\|^2_{L^2(P_X)}[/math] as a measure of accuracy. It measures how close [math]\hat f_n[/math] is to the unknown [math]f[/math] in average over realizations of [math]X_{n+1}[/math].
Fixed design
In fixed design, the points (or vectors) [math]X_1, \ldots, X_n[/math] are deterministic. To emphasize this fact, we use lowercase letters [math]x_1, \ldots, x_n[/math] to denote fixed design. Of course, we can always think of them as realizations of a random variable but the distinction between fixed and random design is deeper and significantly affects our measure of performance. Indeed, recall that for random design, we look at the performance in average over realizations of [math]X_{n+1}[/math]. Here, there is no such thing as a marginal distribution of [math]X_{n+1}[/math]. Rather, since the design points [math]x_1, \ldots, x_n[/math] are considered deterministic, our goal is to estimate [math]f[/math] only at these points. This problem is sometimes called denoising since our goal is to recover [math]f(x_1), \ldots, f(x_n)[/math] given noisy observations of these values. In many instances, fixed designs exhibit particular structures. A typical example is the regular design on [math][0,1][/math], given by [math]x_i=i/n[/math], [math]i=1, \ldots, n[/math]. Interpolation between these points is possible under smoothness assumptions. Note that in fixed design, we observe [math]\mu^*+\eps[/math], where [math]\mu^*=\big(f(x_1), \ldots, f(x_n)\big)^\top \in \R^n[/math] and [math]\eps=(\eps_1, \ldots, \eps_n)^\top \in \R^n[/math] is sub-Gaussian with variance proxy [math]\sigma^2[/math]. Instead of a functional estimation problem, it is often simpler to view this problem as a vector problem in [math]\R^n[/math]. This point of view will allow us to leverage the Euclidean geometry of [math]\R^n[/math]. In the case of fixed design, we will focus on the Mean Squared Error (MSE) as a measure of performance. It is defined by
Equivalently, if we view our problem as a vector problem, it is defined by
Often, the design vectors [math]x_1, \ldots, x_n \in \R^d[/math] are stored in an [math]n\times d[/math] design matrix [math]\X[/math], whose [math]j[/math]th row is given by [math]x_j^\top[/math]. With this notation, the linear regression model can be written as
where [math]Y=(Y_1, \ldots, Y_n)^\top[/math] and [math]\eps=(\eps_1, \ldots, \eps_n)^\top[/math]. Moreover,
A natural example of fixed design regression is image denoising. Assume that [math]\mu^*_i, i \in 1, \ldots, n[/math] is the grayscale value of pixel [math]i[/math] of an image. We do not get to observe the image [math]\mu^*[/math] but rather a noisy version of it [math]Y=\mu^*+\eps[/math]. Given a library of [math]d[/math] images [math]\{x_1, \ldots, x_d\}, x_j \in \R^{n}[/math], our goal is to recover the original image [math]\mu^*[/math] using linear combinations of the images [math]x_1, \ldots, x_d[/math]. This can be done fairly accurately (see Figure~Linear Regression Model).
As we will see in Remark~Linear Regression Model, properly choosing the design also ensures that if [math]\MSE(\hat f)[/math] is small for some linear estimator [math]\hat f(x)=x^\top \hat \theta[/math], then [math]|\hat \theta -\theta^*|_2^2[/math] is also small. \begin{center} \MIT{\framebox{In this chapter we only consider the fixed design case.}} \end{center}
Least squares estimators
Throughout this section, we consider the regression model~\eqref{EQ:regmod_matrix} with fixed design.
Unconstrained least squares estimator
Define the (unconstrained) ’'least squares estimator [math]\thetals[/math] to be any vector such that
Note that we are interested in estimating [math]\X\theta^*[/math] and not [math]\theta^*[/math] itself, so by extension, we also call [math]\muls=\X\thetals[/math] least squares estimator. Observe that [math]\muls[/math] is the projection of [math]Y[/math] onto the column span of [math]\X[/math].
It is not hard to see that least squares estimators of [math]\theta^*[/math] and [math]\mu^*=\X\theta^*[/math] are maximum likelihood estimators when [math]\eps \sim \cN(0,\sigma^2I_n)[/math].
The least squares estimator [math]\muls=\X\thetals \in \R^n[/math] satisfies
The function [math]\theta \mapsto |Y-\X\theta|_2^2[/math] is convex so any of its minima satisfies
We are now going to prove our first result on the finite sample performance of the least squares estimator for fixed design.
Assume that the linear model~\eqref{EQ:regmod_matrix} holds where [math]\eps\sim \sg_n(\sigma^2)[/math]. Then the least squares estimator [math]\thetals[/math] satisfies
Note that by definition
\label{rem:lam_min} If [math]d \le n[/math] and [math]B:=\frac{\X^\top \X}{n}[/math] has rank [math]d[/math], then we have
Constrained least squares estimator
Let [math]K\subset \R^d[/math] be a symmetric convex set. If we know ’'a priori that [math]\theta^* \in K[/math], we may prefer a constrained least squares estimator [math]\thetalsK[/math] defined by
The fundamental inequality~\eqref{EQ:fund_ineq_ls} would still hold and the bounds on the MSE may be smaller. Indeed, ~\eqref{EQ:bound_ls_1} can be replaced by
where [math]K-K=\{x-y\,:\, x, y \in K\}[/math]. It is easy to see that if [math]K[/math] is symmetric ([math]x \in K \Leftrightarrow -x \in K[/math]) and convex, then [math]K-K=2K[/math] so that
where [math]\X K=\{\X\theta\,:\, \theta \in K\} \subset \R^n[/math]. This is a measure of the size (width) of [math]\X K[/math]. If [math]\eps\sim \cN(0,I_d)[/math], the expected value of the above supremum is actually called Gaussian width of [math]\X K[/math]. While [math]\eps[/math] is not Gaussian but sub-Gaussian here, similar properties will still hold.
[math]\ell_1[/math] constrained least squares
Assume here that [math]K=\cB_1[/math] is the unit [math]\ell_1[/math] ball of [math]\R^d[/math]. Recall that it is defined by
and it has exactly [math]2d[/math] vertices [math]\cV=\{e_1, -e_1, \ldots, e_d, -e_d\}[/math], where [math]e_j[/math] is the [math]j[/math]-th vector of the canonical basis of [math]\R^d[/math] and is defined by
It implies that the set [math]\X K=\{\X\theta, \theta \in K\} \subset \R^n[/math] is also a polytope with at most [math]2d[/math] vertices that are in the set [math]\X\cV=\{\X_1, -\X_1, \ldots, \X_d, -\X_d\}[/math] where [math]\X_j[/math] is the [math]j[/math]-th column of [math]\X[/math]. Indeed, [math]\X K[/math] is obtained by rescaling and embedding (resp. projecting) the polytope [math]K[/math] when [math]d \le n[/math] (resp., [math]d \ge n[/math]). Note that some columns of [math]\X[/math] might not be vertices of [math]\X K[/math] so that [math]\X \cV[/math] might be a strict superset of the set of vertices of [math]\X K[/math].
Let [math]K=\cB_1[/math] be the unit [math]\ell_1[/math] ball of [math]\R^d, d\ge 2[/math] and assume that [math]\theta^* \in \cB_1[/math]. Moreover, assume the conditions of Theorem~Linear Regression Model and that the columns of [math]\X[/math] are normalized in such a way that [math]\max_j|\X_j|_2\le \sqrt{n}[/math]. Then the constrained least squares estimator [math]\thetals_{\cB_1}[/math] satisfies
From the considerations preceding the theorem, we get that
Note that the proof of Theorem~Linear Regression Model also applies to [math]\thetals_{\cB_1}[/math] (exercise!) so that [math]\X \thetals_{\cB_1}[/math] benefits from the best of both rates,
This is called an elbow effect. The elbow takes place around [math]r\simeq\sqrt{n}[/math] (up to logarithmic terms).
[math]\ell_0[/math] constrained least squares
By an abuse of notation, we call the number of non-zero coefficients of a vector [math] \theta \in \R^d [/math] its [math]\ell_0[/math] norm (it is not actually a norm). It is denoted by
We call a vector [math]\theta[/math] with ‘`small" [math]\ell_0[/math] norm a ’'sparse vector. More precisely, if [math]|\theta|_0\le k[/math], we say that [math]\theta[/math] is a [math]k[/math]-sparse vector. We also call support of [math]\theta[/math] the set
so that [math]|\theta|_0=\card(\supp(\theta))=:|\supp(\theta)|[/math]\,.
The [math]\ell_0[/math] terminology and notation comes from the fact that
By extension, denote by [math]\cB_0(k)[/math] the [math]\ell_0[/math] ball of [math]\R^d[/math], i.e., the set of [math]k[/math]-sparse vectors, defined by
In this section, our goal is to control the [math]\MSE[/math] of [math]\thetalsK[/math] when [math]K=\cB_0(k)[/math]. Note that computing [math]\thetals_{\cB_0(k)}[/math] essentially requires computing [math]\binom{d}{k}[/math] least squares estimators, which is an exponential number in [math]k[/math]. In practice this will be hard (or even impossible) but it is interesting to understand the statistical properties of this estimator and to use them as a benchmark.
Fix a positive integer [math]k \le d/2[/math]. Let [math]K=\cB_0(k)[/math] be set of [math]k[/math]-sparse vectors of [math]\R^d[/math] and assume that [math]\theta^*\in \cB_0(k)[/math]. Moreover, assume the conditions of Theorem~Linear Regression Model. Then, for any [math]\delta \gt 0[/math], with probability [math]1-\delta[/math], it holds
We begin as in the proof of Theorem~Linear Regression Model to get~\eqref{EQ:bound_ls_1}:
How large is [math]\log\binom{d}{2k}[/math]? It turns out that it is not much larger than [math]k[/math].
For any integers [math]1\le k \le n[/math], it holds
Observe first that if [math]k=1[/math], since [math]n \ge 1[/math], it holds,
It immediately leads to the following corollary:
Under the assumptions of Theorem~Linear Regression Model, for any [math]\delta \gt 0[/math], with probability at least [math]1-\delta[/math], it holds
Note that for any fixed [math]\delta[/math], there exits a constant [math]C_\delta \gt 0[/math] such that for any [math]n \ge 2k[/math], with high probability,
Comparing this result with Theorem~Linear Regression Model with [math]r=k[/math], we see that the price to pay for not knowing the support of [math]\theta^*[/math] but only its size, is a logarithmic factor in the dimension [math]d[/math]. This result immediately leads to the following bound in expectation.
Under the assumptions of Theorem~Linear Regression Model,
It follows from~\eqref{EQ:prMSEl0HP} that for any [math]H\ge 0[/math],
The Gaussian Sequence Model
The Gaussian Sequence Model is a toy model that has received a lot of attention, mostly in the eighties. The main reason for its popularity is that it carries already most of the insight of nonparametric estimation. While the model looks very simple it allows to carry deep ideas that extend beyond its framework and in particular to the linear regression model that we are interested in. Unfortunately, we will only cover a small part of these ideas and the interested reader should definitely look at the excellent books by A. Tsybakov~[3](Chapter~3) and I. Johnstone~[4]. The model is as follows:
where [math]\eps_1, \ldots, \eps_d[/math] are \iid [math]\cN(0,\sigma^2)[/math] random variables. Note that often, [math]d[/math] is taken equal to [math]\infty[/math] in this sequence model and we will also discuss this case. Its links to nonparametric estimation will become clearer in Chapter~Misspecified Linear Models. The goal here is to estimate the unknown vector [math]\theta^*[/math].
The sub-Gaussian Sequence Model
Note first that the model~\eqref{EQ:gsm} is a special case of the linear model with fixed design~\eqref{EQ:regmod} with [math]n=d[/math] and [math]f(x_i)=x_i^\top \theta^*[/math], where [math]x_1, \ldots, x_n[/math] form the canonical basis [math] e_1, \dots, e_n [/math] of [math]\R^n[/math] and [math]\eps[/math] has a Gaussian distribution. Therefore, [math]n=d[/math] is both the dimension of the parameter [math]\theta[/math] and the number of observations and it looks like we have chosen to index this problem by [math]d[/math] rather than [math]n[/math] somewhat arbitrarily. We can bring [math]n[/math] back into the picture, by observing that this model encompasses slightly more general choices for the design matrix [math]\X[/math] as long as it satisfies the following assumption. \begin{assumption}{\textsf{ORT}} The design matrix satisfies
where [math]I_d[/math] denotes the identity matrix of [math]\R^d[/math]. \end{assumption} Assumption~\textsf{ORT} allows for cases where [math]d\le n[/math] but not [math]d \gt n[/math] (high dimensional case) because of obvious rank constraints. In particular, it means that the [math]d[/math] columns of [math]\X[/math] are orthogonal in [math]\R^n[/math] and all have norm [math]\sqrt{n}[/math]. Under this assumption, it follows from the linear regression model~\eqref{EQ:regmod_matrix} that
where [math]\xi=(\xi_1, \ldots, \xi_d)\sim \sg_d(\sigma^2/n)[/math] (If [math]\eps[/math] is Gaussian, we even have [math]\xi \sim \cN_d(0, \sigma^2/n)[/math]). As a result, under the assumption~\textsf{ORT}, when [math]\xi[/math] is Gaussian, the linear regression model~\eqref{EQ:regmod_matrix} is equivalent to the Gaussian Sequence Model~\eqref{EQ:gsm} up to a transformation of the data [math]Y[/math] and a rescaling of the variance. Moreover, for any estimator [math]\hat \theta \in \R^d[/math], under \textsf{ORT}, it follows from~\eqref{EQ:mse_matrix} that
Furthermore, for any [math]\theta \in \R^d[/math], the assumption~\textsf{ORT} yields,
where [math]Q[/math] is a constant that does not depend on [math]\theta[/math] and is defined by
This implies in particular that the least squares estimator [math]\thetals[/math] is equal to [math]y[/math]. \bigskip We introduce a sightly more general model called sub-Gaussian sequence model:
where [math]\xi\sim \sg_d(\sigma^2/n)[/math]. In this section, we can actually completely ‘`forget" about our original model~\eqref{EQ:regmod_matrix}. In particular we can define this model independently of Assumption \textsf{ORT} and thus for any values of [math]n[/math] and [math]d[/math]. The sub-Gaussian sequence model and the Gaussian sequence model are called ’'direct (observation) problems as opposed to inverse problems where the goal is to estimate the parameter [math]\theta^*[/math] only from noisy observations of its image through an operator. The linear regression model is one such inverse problem where the matrix [math]\X[/math] plays the role of a linear operator. However, in these notes, we never try to invert the operator. See [5] for an interesting survey on the statistical theory of inverse problems.
Sparsity adaptive thresholding estimators
If we knew a priori that [math]\theta[/math] was [math]k[/math]-sparse, we could directly employ Corollary~Linear Regression Model to obtain that with probability at least [math]1-\delta[/math], we have
As we will see, the assumption~\textsf{ORT} gives us the luxury to not know [math]k[/math] and yet adapt to its value. Adaptation means that we can construct an estimator that does not require the knowledge of [math]k[/math] (the smallest such that [math]|\theta^*|_0\le k[/math]) and yet perform as well as [math]\thetals_{\cB_0(k)}[/math], up to a multiplicative constant. Let us begin with some heuristic considerations to gain some intuition. Assume the sub-Gaussian sequence model~\eqref{EQ:sGSM}. If nothing is known about [math]\theta^*[/math] it is natural to estimate it using the least squares estimator [math]\thetals=y[/math]. In this case,
where the last inequality holds with probability at least [math]1-\delta[/math]. This is actually what we are looking for if [math]k=Cd[/math] for some positive constant [math]C\le 1[/math]. The problem with this approach is that it does not use the fact that [math]k[/math] may be much smaller than [math]d[/math], which happens when [math]\theta^*[/math] has many zero coordinates. If [math]\theta^*_j=0[/math], then, [math]y_j=\xi_j[/math], which is a sub-Gaussian random variable with variance proxy [math]\sigma^2/n[/math]. In particular, we know from Lemma~Sub-Gaussian Random Variables that with probability at least [math]1-\delta[/math],
The consequences of this inequality are interesting. One the one hand, if we observe [math]|y_j|\gg \tau[/math] , then it must correspond to [math]\theta_j^*\neq 0[/math]. On the other hand, if [math]|y_j| \le \tau[/math] is smaller, then, [math]\theta_j^*[/math] cannot be very large. In particular, by the triangle inequality, [math]|\theta^*_j| \le |y_j|+|\xi_j| \le 2\tau[/math]. Therefore, we loose at most [math]2\tau[/math] by choosing [math]\hat \theta_j=0[/math]. It leads us to consider the following estimator.
The hard thresholding estimator with threshold [math]2\tau \gt 0[/math] is denoted by [math]\thetahard[/math] and has coordinates
From our above consideration, we are tempted to choose [math]\tau[/math] as in~\eqref{EQ:tau1}. Yet, this threshold is not large enough. Indeed, we need to choose [math]\tau[/math] such that [math]|\xi_j|\le \tau[/math] simultaneously for all [math]j[/math]. This can be done using a maximal inequality. Namely, Theorem~Sub-Gaussian Random Variables ensures that with probability at least [math]1-\delta[/math],
It yields the following theorem.
Consider the linear regression model~\eqref{EQ:regmod_matrix} under the assumption~\textsf{ORT} or, equivalenty, the sub-Gaussian sequence model~\eqref{EQ:sGSM}. Then the hard thresholding estimator [math]\thetahard[/math] with threshold
- If [math]|\theta^*|_0=k[/math],
[[math]] \MSE(\X\thetahard)=|\thetahard-\theta^*|_2^2\lesssim \sigma^2\frac{k\log (2d/\delta)}{n}\,. [[/math]]
- if [math]\min_{j \in \supp(\theta^*)}|\theta^*_j| \gt 3\tau[/math], then
[[math]] \supp(\thetahard)=\supp(\theta^*)\,. [[/math]]
Define the event
Similar results can be obtained for the soft thresholding estimator [math]\thetasoft[/math] defined by
In short, we can write
\begin{center}
[[File: | 400px | thumb | Transformation applied to [math]y_j[/math] with [math]2\tau=1[/math] to obtain the hard (left) and soft (right) thresholding estimators}\label{FIG:threshold ]]
\end{center}
High-dimensional linear regression
The BIC and Lasso estimators
It can be shown (see Problem~Linear Regression Model) that the hard and soft thresholding estimators are solutions of the following penalized empirical risk minimization problems:
In view of~\eqref{EQ:ERM_sGSM}, under the assumption~\textsf{ORT}, the above variational definitions can be written as
When the assumption~\textsf{ORT} is not satisfied, they no longer correspond to thresholding estimators but can still be defined as above. We change the constant in the threshold parameters for future convenience.
Fix [math]\tau \gt 0[/math] and assume the linear regression model~\eqref{EQ:regmod_matrix}. The BIC[Notes 2] estimator of [math]\theta^*[/math] is defined by any [math]\thetabic[/math] such that
By contrast, computing the Lasso estimator is a convex problem and there exist many efficient algorithms to solve it. We will not describe this optimization problem in detail but only highlight a few of the best known algorithms:
- Probably the most popular method among statisticians relies on coordinate gradient descent. It is implemented in the \textsf{glmnet} package in \textsf{R} [6],
- An interesting method called LARS [7] computes the entire regularization path, i.e., the solution of the convex problem for all values of [math]\tau[/math]. It relies on the fact that, as a function of [math]\tau[/math], the solution [math]\thetalasso[/math] is a piecewise linear function (with values in [math]\R^d[/math]). Yet this method proved to be too slow for very large problems and has been replaced by glmnet which computes solutions for values of [math]\tau[/math] on a grid much faster.
- The optimization community has made interesting contributions to this field by using proximal methods to solve this problem. These methods exploit the structure of the objective function which is of the form smooth (sum of squares) + simple ([math]\ell_1[/math] norm). A good entry point to this literature is perhaps the FISTA algorithm [8].
- Recently there has been a lot of interest around this objective for very large [math]d[/math] and very large [math]n[/math]. In this case, even computing [math]|Y-\X\theta|_2^2 [/math] may be computationally expensive and solutions based on stochastic gradient descent are flourishing.
Note that by Lagrange duality, computing [math]\thetalasso[/math] is equivalent to solving an [math]\ell_1[/math] constrained least squares. Nevertheless, the radius of the [math]\ell_1[/math] constraint is unknown. In general, it is hard to relate Lagrange multipliers to the size constraints. The name ‘`Lasso" was originally given to the constrained version this estimator in the original paper of Robert Tibshirani [9].
Analysis of the BIC estimator
While computationally hard to implement, the BIC estimator gives us a good benchmark for sparse estimation. Its performance is similar to that of [math]\thetahard[/math] but without requiring the assumption \textsf{ORT}.
Assume that the linear model~\eqref{EQ:regmod_matrix} holds, where [math]\eps \sim \sg_n(\sigma^2)[/math] and that [math]|\theta^*|_0\ge 1[/math]. Then, the BIC estimator [math]\thetabic[/math] with regularization parameter
We begin as usual by noting that
It follows from Theorem~Linear Regression Model that [math]\thetabic[/math] ’'adapts to the unknown sparsity of [math]\theta^*[/math], just like [math]\thetahard[/math]. Moreover, this holds under no assumption on the design matrix [math]\X[/math].
Analysis of the Lasso estimator
Slow rate for the Lasso estimator
The properties of the BIC estimator are quite impressive. It shows that under no assumption on [math]\X[/math], one can mimic two oracles: (i) the oracle that knows the support of [math]\theta^*[/math] (and computes least squares on this support), up to a [math]\log(ed)[/math] term and (ii) the oracle that knows the sparsity [math]|\theta^*|_0[/math] of [math]\theta^*[/math], up to a smaller logarithmic term [math]\log(ed/|\theta^*|_0)[/math], which is subsumed by [math]\log(ed)[/math]. Actually, the [math] \log(ed) [/math] can even be improved to [math] \log(ed/|\theta^\ast|_0) [/math] by using a modified BIC estimator (see Problem~Linear Regression Model). The Lasso estimator is a bit more difficult to analyze because, by construction, it should more naturally adapt to the unknown [math]\ell_1[/math]-norm of [math]\theta^*[/math]. This can be easily shown as in the next theorem, analogous to Theorem~Linear Regression Model.
Assume that the linear model~\eqref{EQ:regmod_matrix} holds where [math]\eps\sim\sg_n(\sigma^2)[/math]. Moreover, assume that the columns of [math]\X[/math] are normalized in such a way that [math]\max_j|\X_j|_2\le \sqrt{n}[/math]. Then, the Lasso estimator [math]\thetalasso[/math] with regularization parameter
From the definition of [math]\thetalasso[/math], it holds
Notice that the regularization parameter~\eqref{EQ:taulasso} depends on the confidence level [math]\delta[/math]. This is not the case for the BIC estimator (see~\eqref{EQ:taubic}). \medskip The rate in Theorem~Linear Regression Model is of order [math]\sqrt{(\log d)/n}[/math] (slow rate), which is much slower than the rate of order [math](\log d)/n[/math] (fast rate) for the BIC estimator. Hereafter, we show that fast rates can also be achieved by the computationally efficient Lasso estimator, but at the cost of a much stronger condition on the design matrix [math]\X[/math].
Incoherence
\begin{assumption}{[math]\mathsf{INC}(k)[/math]} We say that the design matrix [math]\X[/math] has incoherence [math]k[/math] for some integer [math]k \gt 0[/math] if
where the [math]|A|_\infty[/math] denotes the largest element of [math]A[/math] in absolute value. Equivalently,
- For all [math]j=1, \ldots, d[/math],
[[math]] \left|\frac{|\X_j|_2^2}{n}-1\right|\le \frac{1}{32k}\,. [[/math]]
- For all [math]1\le i,j\le d[/math], [math]i\neq j[/math], we have
[[math]] \frac{|\X_i^\top \X_j|}{n} \le \frac{1}{32k}\,. [[/math]]
\end{assumption} Note that Assumption~\textsf{ORT} arises as the limiting case of [math]\mathsf{INC}(k)[/math] as [math]k \to \infty[/math]. However, while Assumption~\textsf{ORT} requires [math]d \le n[/math], here we may have [math]d \gg n[/math] as illustrated in Proposition~Linear Regression Model below. To that end, we simply have to show that there exists a matrix that satisfies [math]\mathsf{INC}(k)[/math] even for [math]d \gt n[/math]. We resort to the probabilistic method [10]. The idea of this method is that if we can find a probability measure that assigns positive probability to objects that satisfy a certain property, then there must exist objects that satisfy said property. In our case, we consider the following probability distribution on random matrices with entries in [math]\{\pm 1\}[/math]. Let the design matrix [math]\X[/math] have entries that are \iid Rademacher [math](\pm 1)[/math] random variables. We are going to show that most realizations of this random matrix satisfy Assumption~[math]\mathsf{INC}(k)[/math] for large enough [math]n[/math].
Let [math]\X \in \R^{n\times d}[/math] be a random matrix with entries [math]X_{ij}, i=1,\ldots, n, j=1, \ldots, d[/math], that are \iid Rademacher [math](\pm 1)[/math] random variables. Then, [math]\X[/math] has incoherence [math]k[/math] with probability [math]1-\delta[/math] as soon as
Let [math]\eps_{ij} \in \{-1,1\}[/math] denote the Rademacher random variable that is on the [math]i[/math]th row and [math]j[/math]th column of [math]\X[/math]. Note first that the [math]j[/math]th diagonal entries of [math]\X^\top\X/n[/math] are given by
\medskip For any [math]\theta \in \R^d[/math], [math]S\subset\{1, \ldots, d\}[/math], define [math]\theta_S[/math] to be the vector with coordinates
In particular [math]|\theta|_1=|\theta_S|_1+|\theta_{S^c}|_1[/math]. The following lemma holds
Fix a positive integer [math]k \le d[/math] and assume that [math]\X[/math] satisfies assumption [math]\mathsf{INC}(k)[/math]. Then, for any [math]S \in \{1, \ldots, d\}[/math] such that [math]|S|\le k[/math] and any [math]\theta \in \R^d[/math] that satisfies the cone condition
We have
- First, if follows from the incoherence condition that
[[math]] \frac{|\X\theta_S|_2^2}{n}=\theta_S^\top \frac{\X^\top\X}{n}\theta_S =|\theta_S|_2^2+\theta_S^\top \left(\frac{\X^\top\X}{n} - I_d\right)\theta_S \ge |\theta_S|_2^2-\frac{|\theta_S|_1^2}{32k}\,, [[/math]]
- Similarly,
[[math]] \frac{|\X\theta_{S^c}|_2^2}{n} \ge |\theta_{S^c}|_2^2-\frac{|\theta_{S^c}|_1^2}{32k}\ge |\theta_{S^c}|_2^2-\frac{9|\theta_{S}|_1^2}{32k}\,, [[/math]]where, in the last inequality, we used the cone condition~\eqref{EQ:conecond}.
- Finally,
[[math]] 2\Big|\theta_S^\top \frac{ \X^\top\X}{n}\theta_{S^c}\Big|\le \frac{2}{32k}|\theta_S|_1|\theta_{S^c}|_1\le \frac{6}{32k}|\theta_S|_1^2. [[/math]]where, in the last inequality, we used the cone condition~\eqref{EQ:conecond}.\
Observe now that it follows from the Cauchy-Schwarz inequality that
Fast rate for the Lasso
Fix [math]n \ge 2[/math]. Assume that the linear model~\eqref{EQ:regmod_matrix} holds where [math]\eps\sim \sg_n(\sigma^2)[/math]. Moreover, assume that [math]|\theta^*|_0\le k[/math] and that [math]\X[/math] satisfies assumption \textsf{INC$(k)$}. Then the Lasso estimator [math]\thetalasso[/math] with regularization parameter defined by
From the definition of [math]\thetalasso[/math], it holds
In particular, it implies that
Note that all we required for the proof was not really incoherence but the conclusion of Lemma~Linear Regression Model:
where [math]\kappa=1/2[/math] and [math]\cC_S[/math] is the cone defined by
Condition~\eqref{EQ:REcond} is sometimes called restricted eigenvalue (RE) condition. Its name comes from the following observation. Note that all [math]k[/math]-sparse vectors [math]\theta[/math] are in a cone [math]\cC_{S}[/math] with [math]|S|\le k[/math] so that the RE condition implies that the smallest eigenvalue of [math]\X_S[/math] satisfies [math]\lambda_\textrm{min}(\X_S)\ge n\kappa[/math] for all [math]S[/math] such that [math]|S|\le k[/math]. Clearly, the RE condition is weaker than incoherence and it can actually be shown that a design matrix [math]\X[/math] of \iid Rademacher random variables satisfies the RE conditions as soon as [math]n\ge Ck\log(d)[/math] with positive probability.
The Slope estimator
We noticed that the BIC estimator can actually obtain a rate of [math] k\log(ed/k) [/math], where [math] k = |\theta^\ast|_0 [/math], while the LASSO only achieves [math] k \log(ed) [/math]. This begs the question whether the same rate can be achieved by an efficiently computable estimator. The answer is yes, and the estimator achieving this is a slight modification of the LASSO, where the entries in the [math] \ell_1 [/math]-norm are weighted differently according to their size in order to get rid of a slight inefficiency in our bounds.
Let [math] \lambda = (\lambda_1, \dots, \lambda_d) [/math] be a non-increasing sequence of positive real numbers, [math] \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d \gt 0 [/math]. For [math] \theta = (\theta_1, \dots, \theta_d) \in \R^d [/math], let [math] (\theta^\ast_1, \dots, \theta^\ast_d) [/math] be a non-increasing rearrangement of the modulus of the entries, [math] |\theta_1|, \dots, |\theta_d| [/math]. We define the sorted [math] \ell_1 [/math] norm of [math] \theta [/math] as
Slope stands for Sorted L-One Penalized Estimation and was introduced in [11], motivated by the quest for a penalized estimation procedure that could offer a control of false discovery rate for the hypotheses [math] H_{0,j}: \theta^\ast_j = 0 [/math]. We can check that [math] |\,.\,|_\ast [/math] is indeed a norm and that [math] \thetaslope [/math] can be computed efficiently, for example by proximal gradient algorithms, see [11]. In the following, we will consider
With this choice, we will exhibit a scaling in [math] \tau [/math] that leads to the desired high probability bounds, following the proofs in [12]. We begin with refined bounds on the suprema of Gaussians.
Let [math] g_1, \dots, g_d [/math] be zero-mean Gaussian variables with variance at most [math] \sigma^2 [/math]. Then, for any [math]k\le d[/math],
We consider the moment generating function to apply a Chernoff bound.
Use Jensen's inequality on the sum to get
Define [math][d]:=\{1, \ldots, d\}[/math]. Under the same assumptions as in Lemma Linear Regression Model,
We can estimate [math] (g^\ast_k)^2 [/math] by the average of all larger variables,
For [math] t \gt 8 [/math],
In turn, this means that
Fix [math]n \ge 2[/math]. Assume that the linear model~\eqref{EQ:regmod_matrix} holds where [math]\eps\sim \cN_n(0,\sigma^2 I_n)[/math]. Moreover, assume that [math]|\theta^*|_0\le k[/math] and that [math]\X[/math] satisfies assumption \textsf{INC$(k')$} with [math] k' \geq 4k \log(2de/k) [/math]. Then the Slope estimator [math]\thetaslope[/math] with regularization parameter defined by
The multplicative depedence on [math] \log(1/\delta) [/math] in \eqref{EQ:fastMSESlope} is an artifact of the simplified proof we give here and can be improved to an additive one similar to the lasso case, \eqref{EQ:fastMSELasso}, by appealing to stronger and more general concentration inequalities. For more details, see [12].
By minimality of [math] \thetaslope [/math] in \eqref{eq:ad}, adding [math] n \tau |\thetaslope - \theta^\ast|_\ast [/math] on both sides,
By Lemma Linear Regression Model, we can estimate
Combined with [math] \tau = 8 \sqrt{2} \sigma \sqrt{\log(1/\delta)/n} [/math] and the basic inequality \eqref{eq:r}, we have that
We can now repeat the incoherence arguments from Lemma Linear Regression Model, with [math] S [/math] being the [math] k [/math] largest entries of [math] |u| [/math], to get the same conclusion under the restriction [math] \textsf{INC}(k') [/math].
First, by exactly the same argument as in Lemma Linear Regression Model, we have
Concluding, if [math] \textsf{INC}( k') [/math] holds with [math] k' \geq 4k \log(2de/k) [/math], taking into account that [math] \lambda_d \ge 1/2 [/math], we have
Problem set
General references
Rigollet, Philippe; Hütter, Jan-Christian (2023). "High-Dimensional Statistics". arXiv:2310.19244 [math.ST].
Notes
- we could use Theorem~Sub-Gaussian Random Variables directly here but at the cost of a factor 2 in the constant.
- Note that it minimizes the Bayes Information Criterion (BIC) employed in the traditional literature of asymptotic statistics if [math]\tau=\sqrt{\log(d)/n}[/math]. We will use the same value below, up to multiplicative constants (it's the price to pay to get non-asymptotic results).
References
- "Robust Face Recognition via Sparse Representation" (2009). IEEE Trans. Pattern Anal. Mach. Intell. 31. IEEE Computer Society.
- "Exponential screening and optimal rates of sparse estimation" (2011). Ann. Statist. 39.
- LeCam, L. (1973). "Convergence of estimates under dimensionality restrictions". Ann. Statist. 1.
- "{{{title}}}" .ffas|first1=StTemplate:\'ephane|last2=LecuTemplate:\'e|first2=Guillaume|journal=J. Mach. Learn. Res.|year=2011|title=Hyper-sparse optimal aggregation|volume=12}}
- Alex; re, B. (2004), Statistique appliqu\'ee
- "Regularization paths for generalized linear models via coordinate descent" . Journal of Statistical Software 33. NIH Public Access.
- "Least angle regression" (2004). Ann. Statist. 32.
- "A fast iterative shrinkage-thresholding algorithm for linear inverse problems" (2009). SIAM J. Imaging Sci. 2.
- Tibshirani, Robert (1996). "Regression shrinkage and selection via the lasso". J. Roy. Statist. Soc. Ser. B 58.
- Alex; re, B. (2004), Statistique appliqu\'ee
- 11.0 11.1 "Template:SLOPE\textemdash{}adaptive Variable Selection via Convex Optimization" (2015). The annals of applied statistics 9.
- 12.0 12.1 "Slope Meets Lasso: Improved Oracle Bounds and Optimality" (2016). arXiv preprint arXiv:1605.08651.