exercise:107d7335ac: Difference between revisions
No edit summary Tag: Reverted |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
A random variable <math>X</math> has <math>\chi^2_n</math> (chi-squared with <math>n</math> degrees of freedom) if it has the same distribution as <math>Z_1^2+ \ldots +Z_n^2</math>, where <math>Z_1, \ldots, Z_n</math> are | <div class="d-none"> | ||
< | <math> | ||
\newcommand{\DS}{\displaystyle} | |||
\newcommand{\intbeta}{\lfloor \beta \rfloor} | |||
\newcommand{\cA}{\mathcal{A}} | |||
\newcommand{\cB}{\mathcal{B}} | |||
\newcommand{\cC}{\mathcal{C}} | |||
\newcommand{\cD}{\mathcal{D}} | |||
\newcommand{\cE}{\mathcal{E}} | |||
\newcommand{\cF}{\mathcal{F}} | |||
\newcommand{\cG}{\mathcal{G}} | |||
\newcommand{\cH}{\mathcal{H}} | |||
\newcommand{\cI}{\mathcal{I}} | |||
\newcommand{\cJ}{\mathcal{J}} | |||
\newcommand{\cK}{\mathcal{K}} | |||
\newcommand{\cL}{\mathcal{L}} | |||
\newcommand{\cM}{\mathcal{M}} | |||
\newcommand{\cN}{\mathcal{N}} | |||
\newcommand{\cO}{\mathcal{O}} | |||
\newcommand{\cP}{\mathcal{P}} | |||
\newcommand{\cQ}{\mathcal{Q}} | |||
\newcommand{\cS}{\mathcal{S}} | |||
\newcommand{\cT}{\mathcal{T}} | |||
\newcommand{\cU}{\mathcal{U}} | |||
\newcommand{\cV}{\mathcal{V}} | |||
\newcommand{\cX}{\mathcal{X}} | |||
\newcommand{\cY}{\mathcal{Y}} | |||
\newcommand{\cZ}{\mathcal{Z}} | |||
\newcommand{\sg}{\mathsf{subG}} | |||
\newcommand{\subE}{\mathsf{subE}} | |||
\newcommand{\bA}{\mathbf{A}} | |||
\newcommand{\bB}{\mathbf{B}} | |||
\newcommand{\bC}{\mathbf{C}} | |||
\newcommand{\bD}{\mathbf{D}} | |||
\newcommand{\bE}{\mathbf{E}} | |||
\newcommand{\bF}{\mathbf{F}} | |||
\newcommand{\bG}{\mathbf{G}} | |||
\newcommand{\bH}{\mathbf{H}} | |||
\newcommand{\bI}{\mathbf{I}} | |||
\newcommand{\bJ}{\mathbf{J}} | |||
\newcommand{\bK}{\mathbf{K}} | |||
\newcommand{\bM}{\mathbf{M}} | |||
\newcommand{\bN}{\mathbf{N}} | |||
\newcommand{\bO}{\mathbf{O}} | |||
\newcommand{\bP}{\mathbf{P}} | |||
\newcommand{\bp}{\mathbf{p}} | |||
\newcommand{\bQ}{\mathbf{Q}} | |||
\newcommand{\bS}{\mathbf{S}} | |||
\newcommand{\bT}{\mathbf{T}} | |||
\newcommand{\bU}{\mathbf{U}} | |||
\newcommand{\bV}{\mathbf{V}} | |||
\newcommand{\bX}{\mathbf{X}} | |||
\newcommand{\bY}{\mathbf{Y}} | |||
\newcommand{\bZ}{\mathbf{Z}} | |||
\newcommand{\bflambda}{\boldsymbol{\lambda}} | |||
\newcommand{\bftheta}{\boldsymbol{\theta}} | |||
\newcommand{\bfg}{\boldsymbol{g}} | |||
\newcommand{\bfy}{\boldsymbol{y}} | |||
\def\thetaphat{\hat{\bftheta}_\bp} | |||
\def\bflam{\boldsymbol{\lambda}} | |||
\def\Lam{\Lambda} | |||
\def\lam{\lambda} | |||
\def\bfpi{\boldsymbol{\pi}} | |||
\def\bfz{\boldsymbol{z}} | |||
\def\bfw{\boldsymbol{w}} | |||
\def\bfeta{\boldsymbol{\eta}} | |||
\newcommand{\R}{\mathrm{ I}\kern-0.18em\mathrm{ R}} | |||
\newcommand{\h}{\mathrm{ I}\kern-0.18em\mathrm{ H}} | |||
\newcommand{\K}{\mathrm{ I}\kern-0.18em\mathrm{ K}} | |||
\newcommand{\p}{\mathrm{ I}\kern-0.18em\mathrm{ P}} | |||
\newcommand{\E}{\mathrm{ I}\kern-0.18em\mathrm{ E}} | |||
%\newcommand{\Z}{\mathrm{ Z}\kern-0.26em\mathrm{ Z}} | |||
\newcommand{\1}{\mathrm{ 1}\kern-0.24em\mathrm{ I}} | |||
\newcommand{\N}{\mathrm{ I}\kern-0.18em\mathrm{ N}} | |||
\newcommand{\field}[1]{\mathbb{#1}} | |||
\newcommand{\q}{\field{Q}} | |||
\newcommand{\Z}{\field{Z}} | |||
\newcommand{\X}{\field{X}} | |||
\newcommand{\Y}{\field{Y}} | |||
\newcommand{\bbS}{\field{S}} | |||
\newcommand{\n}{\mathcal{N}} | |||
\newcommand{\x}{\mathcal{X}} | |||
\newcommand{\pp}{{\sf p}} | |||
\newcommand{\hh}{{\sf h}} | |||
\newcommand{\ff}{{\sf f}} | |||
\newcommand{\Bern}{\mathsf{Ber}} | |||
\newcommand{\Bin}{\mathsf{Bin}} | |||
\newcommand{\Lap}{\mathsf{Lap}} | |||
\newcommand{\tr}{\mathsf{Tr}} | |||
\newcommand{\phin}{\varphi_n} | |||
\newcommand{\phinb}{\overline \varphi_n(t)} | |||
\newcommand{\pn}{\p_{\kern-0.25em n}} | |||
\newcommand{\pnm}{\p_{\kern-0.25em n,m}} | |||
\newcommand{\psubm}{\p_{\kern-0.25em m}} | |||
\newcommand{\psubp}{\p_{\kern-0.25em p}} | |||
\newcommand{\cfi}{\cF_{\kern-0.25em \infty}} | |||
\newcommand{\e}{\mathrm{e}} | |||
\newcommand{\ic}{\mathrm{i}} | |||
\newcommand{\Leb}{\mathrm{Leb}_d} | |||
\newcommand{\Var}{\mathrm{Var}} | |||
\newcommand{\ddelta}{d_{\symdiffsmall}} | |||
\newcommand{\dsubh}{d_H} | |||
\newcommand{\indep}{\perp\kern-0.95em{\perp}} | |||
\newcommand{\supp}{\mathop{\mathrm{supp}}} | |||
\newcommand{\rank}{\mathop{\mathrm{rank}}} | |||
\newcommand{\vol}{\mathop{\mathrm{vol}}} | |||
\newcommand{\conv}{\mathop{\mathrm{conv}}} | |||
\newcommand{\card}{\mathop{\mathrm{card}}} | |||
\newcommand{\argmin}{\mathop{\mathrm{argmin}}} | |||
\newcommand{\argmax}{\mathop{\mathrm{argmax}}} | |||
\newcommand{\ud}{\mathrm{d}} | |||
\newcommand{\var}{\mathrm{var}} | |||
\newcommand{\re}{\mathrm{Re}} | |||
\newcommand{\MSE}{\mathsf{MSE}} | |||
\newcommand{\im}{\mathrm{Im}} | |||
\newcommand{\epr}{\hfill\hbox{\hskip 4pt\vrule width 5pt | |||
height 6pt depth 1.5pt}\vspace{0.5cm}\par} | |||
\newcommand{\bi}[1]{^{(#1)}} | |||
\newcommand{\eps}{\varepsilon} | |||
\newcommand{\Deq}{\stackrel{\mathcal{D}}{=}} | |||
\newcommand{\ubar}{\underbar} | |||
\newcommand{\Kbeta}{K_{\hspace{-0.3mm} \beta}} | |||
\newcommand{\crzero}[1]{\overset{r_0}{\underset{#1}{\longleftrightarrow}}} | |||
\newcommand{\hint}[1]{\texttt{[Hint:#1]}} | |||
\newcommand{\vp}{\vspace{.25cm}} | |||
\newcommand{\vm}{\vspace{.5cm}} | |||
\newcommand{\vg}{\vspace{1cm}} | |||
\newcommand{\vgneg}{\vspace{-1cm}} | |||
\newcommand{\vneg}{\vspace{-.5cm}} | |||
\newcommand{\vpneg}{\vspace{-.25cm}} | |||
\newcommand{\tp}{\ptsize{10}} | |||
\newcommand{\douzp}{\ptsize{12}} | |||
\newcommand{\np}{\ptsize{9}} | |||
\newcommand{\hp}{\ptsize{8}} | |||
\newcommand{\red}{\color{red}} | |||
\newcommand{\ndpr}[1]{{\textsf{\red[#1]}}} | |||
\newcommand\iid{i.i.d\@ifnextchar.{}{.\@\xspace} } | |||
\newcommand\MoveEqLeft[1][2]{\kern #1em & \kern -#1em} | |||
\newcommand{\leadeq}[2][4]{\MoveEqLeft[#1] #2 \nonumber} | |||
\newcommand{\leadeqnum}[2][4]{\MoveEqLeft[#1] #2} | |||
\newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} | |||
\def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} | |||
\newcommand{\MIT}[1]{{\color{MITred} #1}} | |||
\newcommand{\dHyp}{\{-1,1\}^d} | |||
\newcommand{\thetahard}{\hat \theta^{hrd}} | |||
\newcommand{\thetasoft}{\hat \theta^{sft}} | |||
\newcommand{\thetabic}{\hat \theta^{bic}} | |||
\newcommand{\thetalasso}{\hat \theta^{\cL}} | |||
\newcommand{\thetaslope}{\hat \theta^{\cS}} | |||
\newcommand{\thetahard}{\hat \theta^{hrd}} | |||
\newcommand{\thetasoft}{\hat \theta^{sft}} | |||
\newcommand{\thetabic}{\hat \theta^{bic}} | |||
\newcommand{\thetalasso}{\hat \theta^{\cL}} | |||
\newcommand{\thetaslope}{\hat \theta^{\cS}} | |||
\newcommand{\thetals}{\hat \theta^{ls}} | |||
\newcommand{\thetalsm}{\tilde \theta^{ls_X}} | |||
\newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} | |||
\newcommand{\thetalsK}{\hat \theta^{ls}_K} | |||
\newcommand{\muls}{\hat \mu^{ls}} | |||
</math> | |||
</div> | |||
A random variable <math>X</math> has <math>\chi^2_n</math> (chi-squared with <math>n</math> degrees of freedom) if it has the same distribution as <math>Z_1^2+ \ldots +Z_n^2</math>, where <math>Z_1, \ldots, Z_n</math> are \iid <math>\cN(0,1)</math>. | |||
<ol><li> Let <math>Z \sim \cN(0,1)</math>. Show that the moment generating function of <math>Y=Z^2-1</math> satisfies | |||
<math display="block"> | <math display="block"> | ||
Line 21: | Line 209: | ||
\p(Y > 2t+2\sqrt{t})\le e^{-t} | \p(Y > 2t+2\sqrt{t})\le e^{-t} | ||
</math> | </math> | ||
'''Hint:''' you can use the convexity inequality <math>\sqrt{1+u}\le 1+u/2.</math> | |||
</li> | </li> | ||
<li> Show that if <math>X \sim \chi^2_n</math>, then, with probability at least <math>1-\delta</math>, it holds | <li> Show that if <math>X \sim \chi^2_n</math>, then, with probability at least <math>1-\delta</math>, it holds | ||
Line 29: | Line 217: | ||
</math> | </math> | ||
</li> | </li> | ||
</ | </ol> |
Latest revision as of 11:04, 22 May 2024
[math] \newcommand{\DS}{\displaystyle} \newcommand{\intbeta}{\lfloor \beta \rfloor} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\sg}{\mathsf{subG}} \newcommand{\subE}{\mathsf{subE}} \newcommand{\bA}{\mathbf{A}} \newcommand{\bB}{\mathbf{B}} \newcommand{\bC}{\mathbf{C}} \newcommand{\bD}{\mathbf{D}} \newcommand{\bE}{\mathbf{E}} \newcommand{\bF}{\mathbf{F}} \newcommand{\bG}{\mathbf{G}} \newcommand{\bH}{\mathbf{H}} \newcommand{\bI}{\mathbf{I}} \newcommand{\bJ}{\mathbf{J}} \newcommand{\bK}{\mathbf{K}} \newcommand{\bM}{\mathbf{M}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bO}{\mathbf{O}} \newcommand{\bP}{\mathbf{P}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bQ}{\mathbf{Q}} \newcommand{\bS}{\mathbf{S}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bU}{\mathbf{U}} \newcommand{\bV}{\mathbf{V}} \newcommand{\bX}{\mathbf{X}} \newcommand{\bY}{\mathbf{Y}} \newcommand{\bZ}{\mathbf{Z}} \newcommand{\bflambda}{\boldsymbol{\lambda}} \newcommand{\bftheta}{\boldsymbol{\theta}} \newcommand{\bfg}{\boldsymbol{g}} \newcommand{\bfy}{\boldsymbol{y}} \def\thetaphat{\hat{\bftheta}_\bp} \def\bflam{\boldsymbol{\lambda}} \def\Lam{\Lambda} \def\lam{\lambda} \def\bfpi{\boldsymbol{\pi}} \def\bfz{\boldsymbol{z}} \def\bfw{\boldsymbol{w}} \def\bfeta{\boldsymbol{\eta}} \newcommand{\R}{\mathrm{ I}\kern-0.18em\mathrm{ R}} \newcommand{\h}{\mathrm{ I}\kern-0.18em\mathrm{ H}} \newcommand{\K}{\mathrm{ I}\kern-0.18em\mathrm{ K}} \newcommand{\p}{\mathrm{ I}\kern-0.18em\mathrm{ P}} \newcommand{\E}{\mathrm{ I}\kern-0.18em\mathrm{ E}} %\newcommand{\Z}{\mathrm{ Z}\kern-0.26em\mathrm{ Z}} \newcommand{\1}{\mathrm{ 1}\kern-0.24em\mathrm{ I}} \newcommand{\N}{\mathrm{ I}\kern-0.18em\mathrm{ N}} \newcommand{\field}[1]{\mathbb{#1}} \newcommand{\q}{\field{Q}} \newcommand{\Z}{\field{Z}} \newcommand{\X}{\field{X}} \newcommand{\Y}{\field{Y}} \newcommand{\bbS}{\field{S}} \newcommand{\n}{\mathcal{N}} \newcommand{\x}{\mathcal{X}} \newcommand{\pp}{{\sf p}} \newcommand{\hh}{{\sf h}} \newcommand{\ff}{{\sf f}} \newcommand{\Bern}{\mathsf{Ber}} \newcommand{\Bin}{\mathsf{Bin}} \newcommand{\Lap}{\mathsf{Lap}} \newcommand{\tr}{\mathsf{Tr}} \newcommand{\phin}{\varphi_n} \newcommand{\phinb}{\overline \varphi_n(t)} \newcommand{\pn}{\p_{\kern-0.25em n}} \newcommand{\pnm}{\p_{\kern-0.25em n,m}} \newcommand{\psubm}{\p_{\kern-0.25em m}} \newcommand{\psubp}{\p_{\kern-0.25em p}} \newcommand{\cfi}{\cF_{\kern-0.25em \infty}} \newcommand{\e}{\mathrm{e}} \newcommand{\ic}{\mathrm{i}} \newcommand{\Leb}{\mathrm{Leb}_d} \newcommand{\Var}{\mathrm{Var}} \newcommand{\ddelta}{d_{\symdiffsmall}} \newcommand{\dsubh}{d_H} \newcommand{\indep}{\perp\kern-0.95em{\perp}} \newcommand{\supp}{\mathop{\mathrm{supp}}} \newcommand{\rank}{\mathop{\mathrm{rank}}} \newcommand{\vol}{\mathop{\mathrm{vol}}} \newcommand{\conv}{\mathop{\mathrm{conv}}} \newcommand{\card}{\mathop{\mathrm{card}}} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\argmax}{\mathop{\mathrm{argmax}}} \newcommand{\ud}{\mathrm{d}} \newcommand{\var}{\mathrm{var}} \newcommand{\re}{\mathrm{Re}} \newcommand{\MSE}{\mathsf{MSE}} \newcommand{\im}{\mathrm{Im}} \newcommand{\epr}{\hfill\hbox{\hskip 4pt\vrule width 5pt height 6pt depth 1.5pt}\vspace{0.5cm}\par} \newcommand{\bi}[1]{^{(#1)}} \newcommand{\eps}{\varepsilon} \newcommand{\Deq}{\stackrel{\mathcal{D}}{=}} \newcommand{\ubar}{\underbar} \newcommand{\Kbeta}{K_{\hspace{-0.3mm} \beta}} \newcommand{\crzero}[1]{\overset{r_0}{\underset{#1}{\longleftrightarrow}}} \newcommand{\hint}[1]{\texttt{[Hint:#1]}} \newcommand{\vp}{\vspace{.25cm}} \newcommand{\vm}{\vspace{.5cm}} \newcommand{\vg}{\vspace{1cm}} \newcommand{\vgneg}{\vspace{-1cm}} \newcommand{\vneg}{\vspace{-.5cm}} \newcommand{\vpneg}{\vspace{-.25cm}} \newcommand{\tp}{\ptsize{10}} \newcommand{\douzp}{\ptsize{12}} \newcommand{\np}{\ptsize{9}} \newcommand{\hp}{\ptsize{8}} \newcommand{\red}{\color{red}} \newcommand{\ndpr}[1]{{\textsf{\red[#1]}}} \newcommand\iid{i.i.d\@ifnextchar.{}{.\@\xspace} } \newcommand\MoveEqLeft[1][2]{\kern #1em & \kern -#1em} \newcommand{\leadeq}[2][4]{\MoveEqLeft[#1] #2 \nonumber} \newcommand{\leadeqnum}[2][4]{\MoveEqLeft[#1] #2} \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} \newcommand{\MIT}[1]{{\color{MITred} #1}} \newcommand{\dHyp}{\{-1,1\}^d} \newcommand{\thetahard}{\hat \theta^{hrd}} \newcommand{\thetasoft}{\hat \theta^{sft}} \newcommand{\thetabic}{\hat \theta^{bic}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetahard}{\hat \theta^{hrd}} \newcommand{\thetasoft}{\hat \theta^{sft}} \newcommand{\thetabic}{\hat \theta^{bic}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetals}{\hat \theta^{ls}} \newcommand{\thetalsm}{\tilde \theta^{ls_X}} \newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} \newcommand{\thetalsK}{\hat \theta^{ls}_K} \newcommand{\muls}{\hat \mu^{ls}} [/math]
A random variable [math]X[/math] has [math]\chi^2_n[/math] (chi-squared with [math]n[/math] degrees of freedom) if it has the same distribution as [math]Z_1^2+ \ldots +Z_n^2[/math], where [math]Z_1, \ldots, Z_n[/math] are \iid [math]\cN(0,1)[/math].
- Let [math]Z \sim \cN(0,1)[/math]. Show that the moment generating function of [math]Y=Z^2-1[/math] satisfies
[[math]] \phi(s):=E\big[e^{sY}\big]=\left\{ \begin{array}{ll} \displaystyle\frac{e^{-s}}{\sqrt{1-2s}}& \text{if } s \lt 1/2\\ \infty & \text{otherwise} \end{array}\right. [[/math]]
- Show that for all [math]0 \lt s \lt 1/2[/math],
[[math]] \phi(s)\le \exp\Big(\frac{s^2}{1-2s}\Big)\,. [[/math]]
- Conclude that
[[math]] \p(Y \gt 2t+2\sqrt{t})\le e^{-t} [[/math]]Hint: you can use the convexity inequality [math]\sqrt{1+u}\le 1+u/2.[/math]
- Show that if [math]X \sim \chi^2_n[/math], then, with probability at least [math]1-\delta[/math], it holds
[[math]] X \le n+ 2 \sqrt{n\log(1/\delta)}+ 2\log(1/\delta) \,. [[/math]]