exercise:1cae9d071a: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
Show that in [[guide:D9c33cd067#WC-LEM |Lemma]] indeed <math>a_0\in(1,\sqrt{5}-1)</math> holds. | |||
''Hint:'' Establish first that <math>\exp(x)\leqslant 1+x+x^2/2</math> holds for <math>x\leqslant0</math>. | ''Hint:'' Establish first that <math>\exp(x)\leqslant 1+x+x^2/2</math> holds for <math>x\leqslant0</math>. | ||
Latest revision as of 00:19, 2 June 2024
Show that in Lemma indeed [math]a_0\in(1,\sqrt{5}-1)[/math] holds.
Hint: Establish first that [math]\exp(x)\leqslant 1+x+x^2/2[/math] holds for [math]x\leqslant0[/math].