exercise:8dbb0c4f40: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
<div class="d-none"><math> | <div class="d-none"><math> | ||
\newcommand{\smallfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\medfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\textfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\smallfrac}[2] | |||
\newcommand{\medfrac}[2] | |||
\newcommand{\textfrac}[2] | |||
\newcommand{\tr}{\operatorname{tr}} | \newcommand{\tr}{\operatorname{tr}} | ||
\newcommand{\e}{\operatorname{e}} | \newcommand{\e}{\operatorname{e}} | ||
\newcommand{\B}{\operatorname{B}} | \newcommand{\B}{\operatorname{B}} | ||
\newcommand{\Bbar}{\ | \newcommand{\Bbar}{\overline{\operatorname{B}}} | ||
\newcommand{\pr}{\operatorname{pr}} | \newcommand{\pr}{\operatorname{pr}} | ||
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | ||
Line 33: | Line 12: | ||
\newcommand{\V}{\operatorname{V}} | \newcommand{\V}{\operatorname{V}} | ||
\newcommand{\Cov}{\operatorname{Cov}} | \newcommand{\Cov}{\operatorname{Cov}} | ||
\newcommand{\Bigsum}[2] | \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} | ||
\newcommand{\ran}{\operatorname{ran}} | \newcommand{\ran}{\operatorname{ran}} | ||
\newcommand{\card}{\#} | \newcommand{\card}{\#} | ||
\ | \renewcommand{\P}{\operatorname{P}} | ||
\renewcommand{\L}{\operatorname{L}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math> | |||
</div> | |||
Let <math>d\geqslant3</math> and <math>n</math> be such that <math>2\ln(n)\leqslant d</math> holds. Show that | |||
<math display="block"> | <math display="block"> | ||
Line 48: | Line 29: | ||
holds, when <math>x^{\scriptscriptstyle(1)},\dots,x^{\scriptscriptstyle(n)}</math> are drawn uniformly at random from the <math>d</math>--dimensional unit ball. | holds, when <math>x^{\scriptscriptstyle(1)},\dots,x^{\scriptscriptstyle(n)}</math> are drawn uniformly at random from the <math>d</math>--dimensional unit ball. | ||
''Hint:'' Use that <math>1\leqslant d^2/(d-2\ln n)^2</math> holds and apply then the Theorem of Total Probability. | ''Hint:'' Use that <math>1\leqslant d^2/(d-2\ln n)^2</math> holds and apply then the Theorem of Total Probability. | ||
Latest revision as of 00:20, 2 June 2024
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]d\geqslant3[/math] and [math]n[/math] be such that [math]2\ln(n)\leqslant d[/math] holds. Show that
[[math]]
\P\bigl[\bigl|\bigl\langle{}\medfrac{x^{\scriptscriptstyle(j)}}{\|x^{\scriptscriptstyle(j)}\|},\medfrac{x^{\scriptscriptstyle(k)}}{\|x^{\scriptscriptstyle(k)}\|}\bigr\rangle{}\bigr|\leqslant\medfrac{\sqrt{6\ln n}}{\sqrt{d-1}} \text{ for all }j\not=k\bigr]\geqslant 1-\medfrac{1}{n}
[[/math]]
holds, when [math]x^{\scriptscriptstyle(1)},\dots,x^{\scriptscriptstyle(n)}[/math] are drawn uniformly at random from the [math]d[/math]--dimensional unit ball.
Hint: Use that [math]1\leqslant d^2/(d-2\ln n)^2[/math] holds and apply then the Theorem of Total Probability.