exercise:8dbb0c4f40: Difference between revisions
From Stochiki
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
\newcommand{\ran}{\operatorname{ran}} | \newcommand{\ran}{\operatorname{ran}} | ||
\newcommand{\card}{\#} | \newcommand{\card}{\#} | ||
\newcommand{\mathds}{\mathbb}</math></div> | \renewcommand{\P}{\operatorname{P}} | ||
\renewcommand{\L}{\operatorname{L}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math> | |||
</div> | |||
Latest revision as of 00:20, 2 June 2024
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]d\geqslant3[/math] and [math]n[/math] be such that [math]2\ln(n)\leqslant d[/math] holds. Show that
[[math]]
\P\bigl[\bigl|\bigl\langle{}\medfrac{x^{\scriptscriptstyle(j)}}{\|x^{\scriptscriptstyle(j)}\|},\medfrac{x^{\scriptscriptstyle(k)}}{\|x^{\scriptscriptstyle(k)}\|}\bigr\rangle{}\bigr|\leqslant\medfrac{\sqrt{6\ln n}}{\sqrt{d-1}} \text{ for all }j\not=k\bigr]\geqslant 1-\medfrac{1}{n}
[[/math]]
holds, when [math]x^{\scriptscriptstyle(1)},\dots,x^{\scriptscriptstyle(n)}[/math] are drawn uniformly at random from the [math]d[/math]--dimensional unit ball.
Hint: Use that [math]1\leqslant d^2/(d-2\ln n)^2[/math] holds and apply then the Theorem of Total Probability.