exercise:06c2817872: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...") |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | <div class="d-none"><math> | ||
\newcommand{\smallfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\medfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\textfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\smallfrac}[2] | |||
\newcommand{\medfrac}[2] | |||
\newcommand{\textfrac}[2] | |||
\newcommand{\tr}{\operatorname{tr}} | \newcommand{\tr}{\operatorname{tr}} | ||
\newcommand{\e}{\operatorname{e}} | \newcommand{\e}{\operatorname{e}} | ||
\newcommand{\B}{\operatorname{B}} | \newcommand{\B}{\operatorname{B}} | ||
\newcommand{\Bbar}{\ | \newcommand{\Bbar}{\overline{\operatorname{B}}} | ||
\newcommand{\pr}{\operatorname{pr}} | \newcommand{\pr}{\operatorname{pr}} | ||
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | ||
Line 33: | Line 12: | ||
\newcommand{\V}{\operatorname{V}} | \newcommand{\V}{\operatorname{V}} | ||
\newcommand{\Cov}{\operatorname{Cov}} | \newcommand{\Cov}{\operatorname{Cov}} | ||
\newcommand{\Bigsum}[2] | \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} | ||
\newcommand{\ran}{\operatorname{ran}} | \newcommand{\ran}{\operatorname{ran}} | ||
\newcommand{\card}{\#} | \newcommand{\card}{\#} | ||
\ | \renewcommand{\P}{\operatorname{P}} | ||
\renewcommand{\L}{\operatorname{L}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
(‘naive exponential estimate’) Let <math>Y_1,\dots,Y_d</math> be independent random variables and assume that <math>|\E(Y_i^k)|\leqslant k!</math> holds for all <math>k\geqslant0</math> and <math>i=1,\dots,d</math>. | |||
<ul style="list-style-type:lower-roman"><li> Use the series expansion of <math>\exp(\cdot)</math> and the assumption to get | <ul style="list-style-type:lower-roman"><li> Use the series expansion of <math>\exp(\cdot)</math> and the assumption to get | ||
Line 59: | Line 37: | ||
</li> | </li> | ||
<li> Compare the bound in (iii) with the bound of [[#MTB-THM |Theorem]]. | <li> Compare the bound in (iii) with the bound of [[guide:B846f441d7#MTB-THM |Theorem]]. | ||
</li> | </li> | ||
</ul> | </ul> |
Latest revision as of 01:17, 2 June 2024
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}[/math]
(‘naive exponential estimate’) Let [math]Y_1,\dots,Y_d[/math] be independent random variables and assume that [math]|\E(Y_i^k)|\leqslant k![/math] holds for all [math]k\geqslant0[/math] and [math]i=1,\dots,d[/math].
- Use the series expansion of [math]\exp(\cdot)[/math] and the assumption to get
[[math]] \E(\exp(tY_i))\leqslant \Bigsum{k=0}{\infty}t^k=\left\{\begin{array}{cl}\textfrac{1}{1-t} &\text{ for } t\in(-1,1),\\\infty & \text{otherwise.}\end{array}\right. [[/math]]
- Show by means of calculus that
[[math]] \inf_{t\in(0,1)}\exp(-ta)\prod_{i=1}^d\smallfrac{1}{1-t}=\left\{\begin{array}{cl}(\textfrac{a}{d})^d\exp(d-a) &\text{ if } a \gt d,\\ 1 & \text{otherwise.}\end{array}\right. [[/math]]
- Derive an estimate for [math]\P\bigl[|Y_1+\cdots+Y_d|\geqslant a\bigr][/math] from the above.
- Compare the bound in (iii) with the bound of Theorem.