exercise:06c2817872: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
<div class="d-none"><math>
\newcommand{\indexmark}[1]{#1\markboth{#1}{#1}}
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand\xoverline[2][0.75]{%
    \sbox{\myboxA}{$\m@th#2$}%
    \setbox\myboxB\null% Phantom box
    \ht\myboxB=\ht\myboxA%
    \dp\myboxB=\dp\myboxA%
    \wd\myboxB=#1\wd\myboxA% Scale phantom
    \sbox\myboxB{$\m@th\overline{\copy\myboxB}$}%  Overlined phantom
    \setlength\mylenA{\the\wd\myboxA}%  calc width diff
    \addtolength\mylenA{-\the\wd\myboxB}%
    \ifdim\wd\myboxB<\wd\myboxA%
      \rlap{\hskip 0.35\mylenA\usebox\myboxB}{\usebox\myboxA}%
    \else
        \hskip -0.5\mylenA\rlap{\usebox\myboxA}{\hskip 0.5\mylenA\usebox\myboxB}%
    \fi}
\newcommand{\smallfrac}[2]{\scalebox{1.35}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\medfrac}[2]{\scalebox{1.2}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\textfrac}[2]{{\textstyle\ensuremath{\frac{#1}{#2}}}}
\newcommand{\nsum}[1][1.4]{% only for \displaystyle
    \mathop{%
        \raisebox
            {-#1\depthofsumsign+1\depthofsumsign}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\xoverline[0.75]{\operatorname{B}}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
Line 33: Line 12:
\newcommand{\V}{\operatorname{V}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\ensuremath{\mathop{\textstyle\sum}_{#1}^{#2}}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\card}{\#}
\newcommand{\Conv}{\mathop{\scalebox{1.1}{\raisebox{-0.08ex}{$\ast$}}}}%
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}</math></div>


\usepackage{pgfplots}
(‘naive exponential estimate’) Let <math>Y_1,\dots,Y_d</math> be independent random variables and assume that <math>|\E(Y_i^k)|\leqslant k!</math> holds for all <math>k\geqslant0</math> and <math>i=1,\dots,d</math>.
\newcommand{\filledsquare}{\begin{picture}(0,0)(0,0)\put(-4,1.4){$\scriptscriptstyle\text{\ding{110}}$}\end{picture}\hspace{2pt}}
\newcommand{\mathds}{\mathbb}</math></div>
\label{PROBL-EXP-CHERNOFF} (‘naive exponential estimate’) Let <math>Y_1,\dots,Y_d</math> be independent random variables and assume that <math>|\E(Y_i^k)|\leqslant k!</math> holds for all <math>k\geqslant0</math> and <math>i=1,\dots,d</math>.
<ul style="list-style-type:lower-roman"><li> Use the series expansion of <math>\exp(\cdot)</math> and the assumption to get
<ul style="list-style-type:lower-roman"><li> Use the series expansion of <math>\exp(\cdot)</math> and the assumption to get


Line 59: Line 37:


</li>
</li>
<li> Compare the bound in (iii) with the bound of [[#MTB-THM |Theorem]].
<li> Compare the bound in (iii) with the bound of [[guide:B846f441d7#MTB-THM |Theorem]].
</li>
</li>
</ul>
</ul>

Latest revision as of 01:17, 2 June 2024

[math] \newcommand{\smallfrac}[2]{\frac{#1}{#2}} \newcommand{\medfrac}[2]{\frac{#1}{#2}} \newcommand{\textfrac}[2]{\frac{#1}{#2}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\e}{\operatorname{e}} \newcommand{\B}{\operatorname{B}} \newcommand{\Bbar}{\overline{\operatorname{B}}} \newcommand{\pr}{\operatorname{pr}} \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} \newcommand{\E}{\operatorname{E}} \newcommand{\V}{\operatorname{V}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} \newcommand{\ran}{\operatorname{ran}} \newcommand{\card}{\#} \renewcommand{\P}{\operatorname{P}} \renewcommand{\L}{\operatorname{L}} \newcommand{\mathds}{\mathbb}[/math]

(‘naive exponential estimate’) Let [math]Y_1,\dots,Y_d[/math] be independent random variables and assume that [math]|\E(Y_i^k)|\leqslant k![/math] holds for all [math]k\geqslant0[/math] and [math]i=1,\dots,d[/math].

  • Use the series expansion of [math]\exp(\cdot)[/math] and the assumption to get
    [[math]] \E(\exp(tY_i))\leqslant \Bigsum{k=0}{\infty}t^k=\left\{\begin{array}{cl}\textfrac{1}{1-t} &\text{ for } t\in(-1,1),\\\infty & \text{otherwise.}\end{array}\right. [[/math]]
  • Show by means of calculus that
    [[math]] \inf_{t\in(0,1)}\exp(-ta)\prod_{i=1}^d\smallfrac{1}{1-t}=\left\{\begin{array}{cl}(\textfrac{a}{d})^d\exp(d-a) &\text{ if } a \gt d,\\ 1 & \text{otherwise.}\end{array}\right. [[/math]]
  • Derive an estimate for [math]\P\bigl[|Y_1+\cdots+Y_d|\geqslant a\bigr][/math] from the above.
  • Compare the bound in (iii) with the bound of Theorem.