exercise:Ef47114a42: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Generalize [[guide:C64b6be05f#LK-GAUSS-LEM |Proposition]] as follows. For <math>i=1,\dots,d</math> let <math>X_i\sim\mathcal{N}(\mu_i,\sigma_i)</math> be independent Gaussian random variables. Let <math>\lambda_i\not=0</math> be real numbers. Show that <math>X:=\lambda_1X_1+\cdots+\lambda_dX_d</math> is again a Gaussian random variable with mean <math>\mu=(\mu_1+\cdots+\mu_d)/d</math> and <math>\sigma^2=\lambda_1^2\sigma_1^2+\cdots+\lambda_d^2\sigma_d^2</math>.
\newcommand{\indexmark}[1]{#1\markboth{#1}{#1}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}}
\newcommand\xoverline[2][0.75]{%
    \sbox{\myboxA}{$\m@th#2$}%
    \setbox\myboxB\null% Phantom box
    \ht\myboxB=\ht\myboxA%
    \dp\myboxB=\dp\myboxA%
    \wd\myboxB=#1\wd\myboxA% Scale phantom
    \sbox\myboxB{$\m@th\overline{\copy\myboxB}$}%  Overlined phantom
    \setlength\mylenA{\the\wd\myboxA}%  calc width diff
    \addtolength\mylenA{-\the\wd\myboxB}%
    \ifdim\wd\myboxB<\wd\myboxA%
      \rlap{\hskip 0.35\mylenA\usebox\myboxB}{\usebox\myboxA}%
    \else
        \hskip -0.5\mylenA\rlap{\usebox\myboxA}{\hskip 0.5\mylenA\usebox\myboxB}%
    \fi}
\newcommand{\smallfrac}[2]{\scalebox{1.35}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\medfrac}[2]{\scalebox{1.2}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\textfrac}[2]{{\textstyle\ensuremath{\frac{#1}{#2}}}}
\newcommand{\nsum}[1][1.4]{% only for \displaystyle
    \mathop{%
        \raisebox
            {-#1\depthofsumsign+1\depthofsumsign}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\xoverline[0.75]{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\ensuremath{\mathop{\textstyle\sum}_{#1}^{#2}}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\Conv}{\mathop{\scalebox{1.1}{\raisebox{-0.08ex}{$\ast$}}}}%
 
\usepackage{pgfplots}
\newcommand{\filledsquare}{\begin{picture}(0,0)(0,0)\put(-4,1.4){$\scriptscriptstyle\text{\ding{110}}$}\end{picture}\hspace{2pt}}
\newcommand{\mathds}{\mathbb}</math></div>
\label{SUM-GAUSS-PROB} Generalize [[#LK-GAUSS-LEM |Proposition]] as follows. For <math>i=1,\dots,d</math> let <math>X_i\sim\mathcal{N}(\mu_i,\sigma_i)</math> be independent Gaussian random variables. Let <math>\lambda_i\not=0</math> be real numbers. Show that <math>X:=\lambda_1X_1+\cdots+\lambda_dX_d</math> is again a Gaussian random variable with mean <math>\mu=(\mu_1+\cdots+\mu_d)/d</math> and <math>\sigma^2=\lambda_1^2\sigma_1^2+\cdots+\lambda_d^2\sigma_d^2</math>.

Latest revision as of 02:37, 2 June 2024

Generalize Proposition as follows. For [math]i=1,\dots,d[/math] let [math]X_i\sim\mathcal{N}(\mu_i,\sigma_i)[/math] be independent Gaussian random variables. Let [math]\lambda_i\not=0[/math] be real numbers. Show that [math]X:=\lambda_1X_1+\cdots+\lambda_dX_d[/math] is again a Gaussian random variable with mean [math]\mu=(\mu_1+\cdots+\mu_d)/d[/math] and [math]\sigma^2=\lambda_1^2\sigma_1^2+\cdots+\lambda_d^2\sigma_d^2[/math].