exercise:Ef47114a42: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...") |
No edit summary |
||
Line 1: | Line 1: | ||
Generalize [[guide:C64b6be05f#LK-GAUSS-LEM |Proposition]] as follows. For <math>i=1,\dots,d</math> let <math>X_i\sim\mathcal{N}(\mu_i,\sigma_i)</math> be independent Gaussian random variables. Let <math>\lambda_i\not=0</math> be real numbers. Show that <math>X:=\lambda_1X_1+\cdots+\lambda_dX_d</math> is again a Gaussian random variable with mean <math>\mu=(\mu_1+\cdots+\mu_d)/d</math> and <math>\sigma^2=\lambda_1^2\sigma_1^2+\cdots+\lambda_d^2\sigma_d^2</math>. | |||
Latest revision as of 02:37, 2 June 2024
Generalize Proposition as follows. For [math]i=1,\dots,d[/math] let [math]X_i\sim\mathcal{N}(\mu_i,\sigma_i)[/math] be independent Gaussian random variables. Let [math]\lambda_i\not=0[/math] be real numbers. Show that [math]X:=\lambda_1X_1+\cdots+\lambda_dX_d[/math] is again a Gaussian random variable with mean [math]\mu=(\mu_1+\cdots+\mu_d)/d[/math] and [math]\sigma^2=\lambda_1^2\sigma_1^2+\cdots+\lambda_d^2\sigma_d^2[/math].