guide:356ab09fff: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
 
Line 1: Line 1:
==Cumulative from minus infinity to Z==
[[File:Z cumulative from minus infinity.svg|thumb|right|The values correspond to the shaded area for given {{mvar|Z}}]]
This table gives a probability that a statistic is between minus infinity and {{mvar|Z}}.


<math display = "block"> f(z) = \Phi(z)</math>
The values are calculated using the cumulative distribution function of a standard normal distribution with mean of zero and standard deviation of one, usually denoted with the capital Greek letter <math>\Phi</math>, is the integral
<math display = "block">\Phi(z) = \frac 1 {\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} \, dt</math>
<math>\Phi</math>(z) is related to the error function, or {{math|erf(''z'')}}.
<math display ="block"> \Phi(z) = \frac12\left[1 + \operatorname{erf}\left( \frac z {\sqrt 2} \right) \right]</math>
==Cumulative (less than Z)==
This table gives a probability that a statistic is less than {{mvar|Z}} (i.e. between negative infinity and {{mvar|Z}}).
{| class="table"
! ''z'' !! −0.00!! −0.01!! −0.02!! −0.03!! −0.04!! −0.05!! −0.06!! −0.07!! −0.08!! −0.09
|-
! -4.0
|0.00003||0.00003||0.00003||0.00003||0.00003||0.00003||0.00002||0.00002||0.00002||0.00002
|-
| colspan="11" style="padding:0;"|
|-
! -3.9
|0.00005||0.00005||0.00004||0.00004||0.00004||0.00004||0.00004||0.00004||0.00003||0.00003
|-
! -3.8
|0.00007||0.00007||0.00007||0.00006||0.00006||0.00006||0.00006||0.00005||0.00005||0.00005
|-
! -3.7
|0.00011||0.00010||0.00010||0.00010||0.00009||0.00009||0.00008||0.00008||0.00008||0.00008
|-
! -3.6
|0.00016||0.00015||0.00015||0.00014||0.00014||0.00013||0.00013||0.00012||0.00012||0.00011
|-
! -3.5
|0.00023||0.00022||0.00022||0.00021||0.00020||0.00019||0.00019||0.00018||0.00017||0.00017
|-
| colspan="11" style="padding:0;"|
|-
! −3.4
|0.00034||0.00032||0.00031||0.00030||0.00029||0.00028||0.00027||0.00026||0.00025||0.00024
|-
! −3.3
|0.00048||0.00047||0.00045||0.00043||0.00042||0.00040||0.00039||0.00038||0.00036||0.00035
|-
! −3.2
|0.00069||0.00066||0.00064||0.00062||0.00060||0.00058||0.00056||0.00054||0.00052||0.00050
|-
! −3.1
|0.00097||0.00094||0.00090||0.00087||0.00084||0.00082||0.00079||0.00076||0.00074||0.00071
|-
! −3.0
|0.00135||0.00131||0.00126||0.00122||0.00118||0.00114||0.00111||0.00107||0.00104||0.00100
|-
| colspan="11" style="padding:0;"|
|-
! −2.9
|0.00187||0.00181||0.00175||0.00169||0.00164||0.00159||0.00154||0.00149||0.00144||0.00139
|-
! −2.8
|0.00256||0.00248||0.00240||0.00233||0.00226||0.00219||0.00212||0.00205||0.00199||0.00193
|-
! −2.7
|0.00347||0.00336||0.00326||0.00317||0.00307||0.00298||0.00289||0.00280||0.00272||0.00264
|-
! −2.6
|0.00466||0.00453||0.00440||0.00427||0.00415||0.00402||0.00391||0.00379||0.00368||0.00357
|-
! −2.5
|0.00621||0.00604||0.00587||0.00570||0.00554||0.00539||0.00523||0.00508||0.00494||0.00480
|-
| colspan="11" style="padding:0;"|
|-
! −2.4
|0.00820||0.00798||0.00776||0.00755||0.00734||0.00714||0.00695||0.00676||0.00657||0.00639
|-
! −2.3
|0.01072||0.01044||0.01017||0.00990||0.00964||0.00939||0.00914||0.00889||0.00866||0.00842
|-
! −2.2
|0.01390||0.01355||0.01321||0.01287||0.01255||0.01222||0.01191||0.01160||0.01130||0.01101
|-
! −2.1
|0.01786||0.01743||0.01700||0.01659||0.01618||0.01578||0.01539||0.01500||0.01463||0.01426
|-
! −2.0
|0.02275||0.02222||0.02169||0.02118||0.02068||0.02018||0.01970||0.01923||0.01876||0.01831
|-
| colspan="11" style="padding:0;"|
|-
! −1.9
|0.02872||0.02807||0.02743||0.02680||0.02619||0.02559||0.02500||0.02442||0.02385||0.02330
|-
! −1.8
|0.03593||0.03515||0.03438||0.03362||0.03288||0.03216||0.03144||0.03074||0.03005||0.02938
|-
! −1.7
|0.04457||0.04363||0.04272||0.04182||0.04093||0.04006||0.03920||0.03836||0.03754||0.03673
|-
! −1.6
|0.05480||0.05370||0.05262||0.05155||0.05050||0.04947||0.04846||0.04746||0.04648||0.04551
|-
! −1.5
|0.06681||0.06552||0.06426||0.06301||0.06178||0.06057||0.05938||0.05821||0.05705||0.05592
|-
| colspan="11" style="padding:0;"|
|-
! −1.4
|0.08076||0.07927||0.07780||0.07636||0.07493||0.07353||0.07215||0.07078||0.06944||0.06811
|-
! −1.3
|0.09680||0.09510||0.09342||0.09176||0.09012||0.08851||0.08692||0.08534||0.08379||0.08226
|-
! −1.2
|0.11507||0.11314||0.11123||0.10935||0.10749||0.10565||0.10383||0.10204||0.10027||0.09853
|-
! −1.1
|0.13567||0.13350||0.13136||0.12924||0.12714||0.12507||0.12302||0.12100||0.11900||0.11702
|-
! −1.0
|0.15866||0.15625||0.15386||0.15151||0.14917||0.14686||0.14457||0.14231||0.14007||0.13786
|-
| colspan="11" style="padding:0;"|
|-
! −0.9
|0.18406||0.18141||0.17879||0.17619||0.17361||0.17106||0.16853||0.16602||0.16354||0.16109
|-
! −0.8
|0.21186||0.20897||0.20611||0.20327||0.20045||0.19766||0.19489||0.19215||0.18943||0.18673
|-
! −0.7
|0.24196||0.23885||0.23576||0.23270||0.22965||0.22663||0.22363||0.22065||0.21770||0.21476
|-
! −0.6
|0.27425||0.27093||0.26763||0.26435||0.26109||0.25785||0.25463||0.25143||0.24825||0.24510
|-
! −0.5
|0.30854||0.30503||0.30153||0.29806||0.29460||0.29116||0.28774||0.28434||0.28096||0.27760
|-
| colspan="11" style="padding:0;"|
|-
! −0.4
|0.34458||0.34090||0.33724||0.33360||0.32997||0.32636||0.32276||0.31918||0.31561||0.31207
|-
! −0.3
|0.38209||0.37828||0.37448||0.37070||0.36693||0.36317||0.35942||0.35569||0.35197||0.34827
|-
! −0.2
|0.42074||0.41683||0.41294||0.40905||0.40517||0.40129||0.39743||0.39358||0.38974||0.38591
|-
! −0.1
|0.46017||0.45620||0.45224||0.44828||0.44433||0.44038||0.43644||0.43251||0.42858||0.42465
|-
! −0.0
|0.50000||0.49601||0.49202||0.48803||0.48405||0.48006||0.47608||0.47210||0.46812||0.46414
|-
! ''z'' !! −0.00!! −0.01!! −0.02!! −0.03!! −0.04!! −0.05!! −0.06!! −0.07!! −0.08!! −0.09
|}
{| class="table"
! ''z'' !! + 0.00!! + 0.01!! + 0.02!! + 0.03!! + 0.04!! + 0.05!! + 0.06!! + 0.07!! + 0.08!! + 0.09
|-
! 0.0
|0.50000||0.50399||0.50798||0.51197||0.51595||0.51994||0.52392||0.52790||0.53188||0.53586
|-
! 0.1
|0.53983||0.54380||0.54776||0.55172||0.55567||0.55962||0.56360||0.56749||0.57142||0.57535
|-
! 0.2
|0.57926||0.58317||0.58706||0.59095||0.59483||0.59871||0.60257||0.60642||0.61026||0.61409
|-
! 0.3
|0.61791||0.62172||0.62552||0.62930||0.63307||0.63683||0.64058||0.64431||0.64803||0.65173
|-
! 0.4
|0.65542||0.65910||0.66276||0.66640||0.67003||0.67364||0.67724||0.68082||0.68439||0.68793
|-
| colspan="1" style="padding:0;"|
|-
! 0.5
|0.69146||0.69497||0.69847||0.70194||0.70540||0.70884||0.71226||0.71566||0.71904||0.72240
|-
! 0.6
|0.72575||0.72907||0.73237||0.73565||0.73891||0.74215||0.74537||0.74857||0.75175||0.75490
|-
! 0.7
|0.75804||0.76115||0.76424||0.76730||0.77035||0.77337||0.77637||0.77935||0.78230||0.78524
|-
! 0.8
|0.78814||0.79103||0.79389||0.79673||0.79955||0.80234||0.80511||0.80785||0.81057||0.81327
|-
! 0.9
|0.81594||0.81859||0.82121||0.82381||0.82639||0.82894||0.83147||0.83398||0.83646||0.83891
|-
| colspan="1" style="padding:0;"|
|-
! 1.0
|0.84134||0.84375||0.84614||0.84849||0.85083||0.85314||0.85543||0.85769||0.85993||0.86214
|-
! 1.1
|0.86433||0.86650||0.86864||0.87076||0.87286||0.87493||0.87698||0.87900||0.88100||0.88298
|-
! 1.2
|0.88493||0.88686||0.88877||0.89065||0.89251||0.89435||0.89617||0.89796||0.89973||0.90147
|-
! 1.3
|0.90320||0.90490||0.90658||0.90824||0.90988||0.91149||0.91308||0.91466||0.91621||0.91774
|-
! 1.4
|0.91924||0.92073||0.92220||0.92364||0.92507||0.92647||0.92785||0.92922||0.93056||0.93189
|-
| colspan="1" style="padding:0;"|
|-
! 1.5
|0.93319||0.93448||0.93574||0.93699||0.93822||0.93943||0.94062||0.94179||0.94295||0.94408
|-
! 1.6
|0.94520||0.94630||0.94738||0.94845||0.94950||0.95053||0.95154||0.95254||0.95352||0.95449
|-
! 1.7
|0.95543||0.95637||0.95728||0.95818||0.95907||0.95994||0.96080||0.96164||0.96246||0.96327
|-
! 1.8
|0.96407||0.96485||0.96562||0.96638||0.96712||0.96784||0.96856||0.96926||0.96995||0.97062
|-
! 1.9
|0.97128||0.97193||0.97257||0.97320||0.97381||0.97441||0.97500||0.97558||0.97615||0.97670
|-
| colspan="1" style="padding:0;"|
|-
! 2.0
|0.97725||0.97778||0.97831||0.97882||0.97932||0.97982||0.98030||0.98077||0.98124||0.98169
|-
! 2.1
|0.98214||0.98257||0.98300||0.98341||0.98382||0.98422||0.98461||0.98500||0.98537||0.98574
|-
! 2.2
|0.98610||0.98645||0.98679||0.98713||0.98745||0.98778||0.98809||0.98840||0.98870||0.98899
|-
! 2.3
|0.98928||0.98956||0.98983||0.99010||0.99036||0.99061||0.99086||0.99111||0.99134||0.99158
|-
! 2.4
|0.99180||0.99202||0.99224||0.99245||0.99266||0.99286||0.99305||0.99324||0.99343||0.99361
|-
| colspan="1" style="padding:0;"|
|-
! 2.5
|0.99379||0.99396||0.99413||0.99430||0.99446||0.99461||0.99477||0.99492||0.99506||0.99520
|-
! 2.6
|0.99534||0.99547||0.99560||0.99573||0.99585||0.99598||0.99609||0.99621||0.99632||0.99643
|-
! 2.7
|0.99653||0.99664||0.99674||0.99683||0.99693||0.99702||0.99711||0.99720||0.99728||0.99736
|-
! 2.8
|0.99744||0.99752||0.99760||0.99767||0.99774||0.99781||0.99788||0.99795||0.99801||0.99807
|-
! 2.9
|0.99813||0.99819||0.99825||0.99831||0.99836||0.99841||0.99846||0.99851||0.99856||0.99861
|-
| colspan="1" style="padding:0;"|
|-
! 3.0
|0.99865||0.99869||0.99874||0.99878||0.99882||0.99886||0.99889||0.99893||0.99896||0.99900
|-
! 3.1
|0.99903||0.99906||0.99910||0.99913||0.99916||0.99918||0.99921||0.99924||0.99926||0.99929
|-
! 3.2
|0.99931||0.99934||0.99936||0.99938||0.99940||0.99942||0.99944||0.99946||0.99948||0.99950
|-
! 3.3
|0.99952||0.99953||0.99955||0.99957||0.99958||0.99960||0.99961||0.99962||0.99964||0.99965
|-
! 3.4
|0.99966||0.99968||0.99969||0.99970||0.99971||0.99972||0.99973||0.99974||0.99975||0.99976
|-
| colspan="1" style="padding:0;"|
|-
! 3.5
|0.99977||0.99978||0.99978||0.99979||0.99980||0.99981||0.99981||0.99982||0.99983||0.99983
|-
! 3.6
|0.99984||0.99985||0.99985||0.99986||0.99986||0.99987||0.99987||0.99988||0.99988||0.99989
|-
! 3.7
|0.99989||0.99990||0.99990||0.99990||0.99991||0.99991||0.99992||0.99992||0.99992||0.99992
|-
! 3.8
|0.99993||0.99993||0.99993||0.99994||0.99994||0.99994||0.99994||0.99995||0.99995||0.99995
|-
! 3.9
|0.99995||0.99995||0.99996||0.99996||0.99996||0.99996||0.99996||0.99996||0.99997||0.99997
|-
| colspan="1" style="padding:0;"|
|-
! 4.0
|0.99997||0.99997||0.99997||0.99997||0.99997||0.99997||0.99998||0.99998||0.99998||0.99998
|-
! ''z'' !! +0.00!! +0.01!! +0.02!! +0.03!! +0.04!! +0.05!! +0.06!! +0.07!! +0.08!! +0.09
|}
<ref>0.5 + each value in ''Cumulative from mean'' table</ref>
==Notes==

Latest revision as of 18:18, 12 June 2024

Cumulative from minus infinity to Z

The values correspond to the shaded area for given Z

This table gives a probability that a statistic is between minus infinity and Z.

[[math]] f(z) = \Phi(z)[[/math]]

The values are calculated using the cumulative distribution function of a standard normal distribution with mean of zero and standard deviation of one, usually denoted with the capital Greek letter [math]\Phi[/math], is the integral

[[math]]\Phi(z) = \frac 1 {\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} \, dt[[/math]]

[math]\Phi[/math](z) is related to the error function, or erf(z).

[[math]] \Phi(z) = \frac12\left[1 + \operatorname{erf}\left( \frac z {\sqrt 2} \right) \right][[/math]]

Cumulative (less than Z)

This table gives a probability that a statistic is less than Z (i.e. between negative infinity and Z).

z −0.00 −0.01 −0.02 −0.03 −0.04 −0.05 −0.06 −0.07 −0.08 −0.09
-4.0 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002
-3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003
-3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005
-3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008
-3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011
-3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017
−3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024
−3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035
−3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050
−3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071
−3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100
−2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139
−2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
−2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264
−2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
−2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
−2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
−2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
−2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
−2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
−2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
−1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330
−1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
−1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
−1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
−1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
−1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
−1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08692 0.08534 0.08379 0.08226
−1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
−1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
−1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
−0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109
−0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
−0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
−0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
−0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760
−0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207
−0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
−0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
−0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
−0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
z −0.00 −0.01 −0.02 −0.03 −0.04 −0.05 −0.06 −0.07 −0.08 −0.09
z + 0.00 + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997
4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998
z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09

[1]

Notes

  1. 0.5 + each value in Cumulative from mean table