exercise:58cc566ddc: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Alter the program ''' MonteCarlo''' to estimate the area under the graph of <math>y = \sin\pi x</math> inside the unit square by choosing 10,00 points at random. Now calculate the true value of this area and use your results to estimate the value...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Alter the program ''' MonteCarlo''' to estimate the area under the graph of <math>y = \sin\pi x</math> inside the unit square by
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Alter the program ''' MonteCarlo''' to
estimate the area under the graph of <math>y = \sin\pi x</math> inside the unit square by
choosing 10,00 points at random.  Now calculate the true value of this
choosing 10,00 points at random.  Now calculate the true value of this
area and use your results to estimate the value of <math>\pi</math>.  How accurate is your estimate?
area and use your results to estimate the value of <math>\pi</math>.  How accurate is your estimate?

Latest revision as of 21:22, 12 June 2024

Alter the program MonteCarlo to estimate the area under the graph of [math]y = \sin\pi x[/math] inside the unit square by choosing 10,00 points at random. Now calculate the true value of this area and use your results to estimate the value of [math]\pi[/math]. How accurate is your estimate?