exercise:747881379d: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For the task described in Exercise Exercise, it can be shown<ref group="Notes" >E. B. Dynkin and A. A. Yushkevich, ''Markov Processes: Theorems and Problems,'' trans. J. S. Wood (New York: Plenum, 1969).</ref> that the bes...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
For the task described in [[exercise:C48b5291ef |Exercise]], it can be shown<ref group="Notes" >E. B. Dynkin and A. A. Yushkevich, ''Markov Processes: Theorems and Problems,'' trans. J. S. Wood (New York: Plenum, 1969).</ref> that the best strategy is
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> For the task described in Exercise [[exercise:C48b5291ef |Exercise]], it can
be shown<ref group="Notes" >E. B. Dynkin and A. A. Yushkevich, ''Markov Processes: Theorems
and Problems,'' trans. J. S. Wood (New York: Plenum, 1969).</ref> that the best strategy is
to pass over the first <math>k - 1</math> candidates where <math>k</math> is the smallest integer for which
to pass over the first <math>k - 1</math> candidates where <math>k</math> is the smallest integer for which



Latest revision as of 22:55, 12 June 2024

For the task described in Exercise, it can be shown[Notes 1] that the best strategy is to pass over the first [math]k - 1[/math] candidates where [math]k[/math] is the smallest integer for which

[[math]] \frac 1k + \frac 1{k + 1} + \cdots + \frac 1{n - 1} \leq 1\ . [[/math]]

Using this strategy the probability of getting the best candidate is approximately [math]1/e = .368[/math]. Write a program to simulate Barbara Smith's interviewing if she uses this optimal strategy, using [math]n = 10[/math], and see if you can verify that the probability of success is approximately [math]1/e[/math].

Notes

  1. E. B. Dynkin and A. A. Yushkevich, Markov Processes: Theorems and Problems, trans. J. S. Wood (New York: Plenum, 1969).