exercise:4192d34079: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that if we start with the identity ordering of <math>\{1, 2, \ldots, n\}</math>, then the probability that an <math>a</math>-shuffle leads to an ordering with exactly <math>r</math> rising sequences equals <math display="block"> {{{n + a - r...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Show that if we start with the identity ordering of <math>\{1, 2,\ldots, n\}</math>, then the probability that an <math>a</math>-shuffle leads to an ordering with
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Show that if we start with the identity ordering of <math>\{1, 2,
\ldots, n\}</math>, then the probability that an <math>a</math>-shuffle leads to an ordering with
exactly <math>r</math> rising sequences equals
exactly <math>r</math> rising sequences equals



Latest revision as of 23:29, 12 June 2024

Show that if we start with the identity ordering of [math]\{1, 2,\ldots, n\}[/math], then the probability that an [math]a[/math]-shuffle leads to an ordering with exactly [math]r[/math] rising sequences equals

[[math]] {{{n + a - r}\choose{n}}\over{a^n}}A(n, r)\ , [[/math]]

for [math]1 \le r \le a[/math].