exercise:Cc33941899: Difference between revisions
From Stochiki
(Created page with "Let <math>X</math> and <math>Y</math> be independent random variables with uniform density functions on <math>[0,1]</math>. Find <math>E((X + Y)^2)</math>. '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
Let <math>X</math> and <math>Y</math> be independent random variables with uniform | Let <math>X</math> and <math>Y</math> be independent random variables with uniform | ||
density functions on <math>[0,1]</math>. Find <math>E((X + Y)^2)</math>. | density functions on <math>[0,1]</math>. Find <math>E((X + Y)^2)</math>. | ||
<ul class="mw-excansopts"> | |||
<li>2/3</li> | |||
<li>3/4</li> | |||
<li>1</li> | |||
<li>7/6</li> | |||
<li>3/2</li> | |||
</ul> | |||
'''References''' | '''References''' | ||
{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}} | {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}} |
Latest revision as of 00:47, 28 June 2024
Let [math]X[/math] and [math]Y[/math] be independent random variables with uniform density functions on [math][0,1][/math]. Find [math]E((X + Y)^2)[/math].
- 2/3
- 3/4
- 1
- 7/6
- 3/2
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.