guide:C3b799fb83: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
</math></div>


Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here.
Let <math>f</math> be a function which is bounded on a closed interval <math>[a, b]</math>. This implies that <math>[a, b]</math> is contained in the domain of <math>f</math> and that there exists a positive number <math>B</math> such that <math>|f(x)|  <  B</math> for all <math>x</math> in <math>[a, b]</math>. We recall that, for every partition <math>\sigma</math> of <math>[a, b]</math>, there are defined the upper and lower sums for <math>f</math> relative to <math>\sigma</math>, which are denoted by <math>U_\sigma</math> and <math>L_\sigma</math>, respectively. Moreover, it has been shown (see page 168) that
<math display="block">
L_\sigma \leq L_{\sigma \cup \tau} \leq U_{\sigma \cup \tau} \leq U_\tau,  ( 1 )
</math>
for any two partitions <math>\sigma</math> and <math>\tau</math> of <math>[a, b]</math>. The function <math>f</math> is defined to be integrable over <math>[a, b]</math> if there exists one and only one number, denoted <math>\int_a^b f</math>, with the property that 
<math display="block">
L_\sigma \leq \int_a^b f \leq U_\tau ,
</math>
for any two partitions <math>\sigma</math> and <math>\tau</math> of <math>[a, b]</math>. It is an immediate consequence of this definition and the inequalities (1) that <math>f</math> is integrable over <math>[a, b]</math> if and only if, for any positive number <math>\epsilon</math>, there exists a partition <math>\sigma</math> of <math>[a, b]</math> such that <math>U_\sigma - L_\sigma  <  \epsilon</math>. A similar corollary, which we shall also usebin the subsequent proofs, is the statement that <math>f</math> is integrable over <math>[a, b]</math> and <math>\int_a^b f = J</math> if and only if, for every positive number <math>\epsilon</math>, there exists a partition <math>\sigma</math> of <math>[a, b]</math> such that <math>|U_\sigma - J|  <  \epsilon</math> and <math>|J - L_\sigma|  <  \epsilon</math>.
The first property of the definite integral, which we shall establish in this section, is presented in the following theorem:
{{proofcard|THEOREM 1 |thm-1|The function <math>f</math> is integrable over the intervals <math>[a, b]</math> and <math>[b, c]</math> if and only if it is integrable over their union <math>[a, c]</math>. Furthermore,
<math display="block">
\int_a^b f + \int_b^c f  = \int_a^c f.
</math>|We first assume that <math>f</math> is integrable over <math>[a, b]</math> and over <math>[b, c]</math>. Let <math>\epsilon</math> be an arbitrary positive number. Then there exists a partition <math>\sigma_1</math> of <math>[a, b]</math>, and a partition <math>\sigma_2</math> of <math>[b, c]</math> such that the following inequalities hold:
<math display="block">
\begin{eqnarray*}
\Big| U_{\sigma_1} - \int_a^b f \Big|  <  \frac{\epsilon}{2} , \;\;\;
\Big| \int_a^b - L_{\sigma_1} f \Big|  <  \frac{\epsilon}{2}  , \\
\Big| U_{\sigma_2} - \int_b^c f \Big|  <  \frac{\epsilon}{2} , \;\;\; 
\Big| \int_b^c - L_{\sigma_2} f \Big|  <  \frac{\epsilon}{2} .
\end{eqnarray*}
</math>
It follows from these that
<math display="block">
\begin{eqnarray*}
\Big| (U_{\sigma_1} + U_{\sigma_2}) - \Big( \int_a^b f + \int_b^c f \Big) \Big|  <  \epsilon ,\\
\Big| \Big(\int_a^b f + \int_b^c f \Big) - \Big(L_{\sigma_1} + L_{\sigma_2} \Big) \Big|  <  \epsilon .
\end{eqnarray*}
</math>
Let us set <math>{\sigma_1} \cup {\sigma_2} = \sigma</math>. This union is a partition of <math>[a, c]</math>, and it is obvious that
<math display="block">
\begin{eqnarray*}
U_{\sigma_1} + U_{\sigma_2} = U_\sigma, \\
L_{\sigma_1} + L_{\sigma_2} = L_\sigma .
\end{eqnarray*}
</math>
Hence
<math display="block">
\begin{eqnarray*}
\Big| U_\sigma  -  \Big(\int_a^b f + \int_b^c f \Big) \Big| \leq \epsilon, \\
\Big| \Big(\int_a^b f + \int_b^c f \Big) - L_\sigma \Big| \leq \epsilon .
\end{eqnarray*}
</math>
These inequalities imply that <math>f</math> is integrable over <math>[a, c]</math> and also that
<math display="block">
\int_a^c f = \int_a^b f + \int_b^c f .
</math>
It remains to prove that, if <math>f</math> is integrable over <math>[a, c]</math>, then it is integrable over <math>[a, b]</math> and over <math>[b, c]</math>. We choose an arbitrary positive number <math>\epsilon</math>. Since <math>f</math> is integrable over <math>[a, c]</math>, there exists a partition <math>\sigma</math> of <math>[a, c]</math> such that <math>U_\sigma - L_\sigma  <  \epsilon</math>. Let us form a refinement of the partition <math>\sigma</math> by adjoining the number <math>b</math>. That is, we set
<math display="block">
\sigma' = \sigma \cup \{ b \}.
</math>
(It is, of course, possible that <math>\sigma</math> already contains <math>b</math>, in which case <math>\sigma' = \sigma</math>.) Then
<math display="block">
L_\sigma \leq L_{\sigma'} \leq U_{\sigma'} \leq U_{\sigma'},
</math>
from which it follows that <math>U_{\sigma'}  - L_{\sigma'},  <  \epsilon</math>. But, since <math>b</math> belongs to <math>\sigma'</math>, we can write <math>\sigma' = \sigma_1 \cup \sigma_2</math>, where <math>\sigma_1</math> is a partition of <math>[a, b]</math> and <math>\sigma_2</math> is a partition of <math>[b, c]</math>. Moreover,
<math display="block">
\begin{eqnarray*}
U_{\sigma'} = U_{\sigma_1} + U_{\sigma_2},\\
L_{\sigma'} = L_{\sigma_1} + L_{\sigma_2} .
\end{eqnarray*}
</math>
Hence
<math display="block">
(U_{\sigma_1} - L_{\sigma_1}) + (U_{\sigma_2} - L_{\sigma_2}) = U_{\sigma'}  - L_{\sigma'}  <  \epsilon,
</math>
Since <math>U_{\sigma_1} - L_{\sigma_1}</math> and <math>U_{\sigma_2} - L_{\sigma_2}</math>
are both nonnegative, it follows that
<math display="block">
\begin{eqnarray*}
U_{\sigma_1} - L_{\sigma_1}  <  \epsilon,\\
U_{\sigma_2} - L_{\sigma_2}  <  \epsilon .
\end{eqnarray*}
</math>
The first of these inequalities implies that <math>f</math> is integrable over <math>[a, b]</math>, and the second that <math>f</math> is integrable over <math>[b, c]</math>. This completes the proof of Theorem 1.}}
The second result to be proved is the following:
{{proofcard|THEOREM 2|thm-2|If <math>f</math> and <math>g</math> are integrable over <math>[a, b]</math>, then so is their sum and
<math display="block">
\int_a^b (f + g) = \int_a^b f + \int_a^b g .
</math>|Let <math>\epsilon</math> be an arbitrary positive number. By taking, if necessary, the common refinement <math>\sigma_1 \cup \sigma_2</math> of two partitions of <math>[a, b]</math>, we may select a partition <math>\sigma</math> of <math>[a, b]</math> such that
<math display="block">
\begin{array}{ll}
\Big| U_\sigma^{(f)} - \int_a^b f \Big|  <  \frac{\epsilon}{2} , \;\;\;&
\Big| \int_a^b f - L_\sigma^{(f)} \Big|  <  \frac{\epsilon}{2} , \\
\Big| U_\sigma^{(g)} - \int_a^b g \Big|  <  \frac{\epsilon}{2},\;\;\;&
\Big| \int_a^b g - L_\sigma^{(g)} \Big|  <  \frac{\epsilon}{2} ,
\end{array}
</math>
where <math>U_\sigma^{(f)}</math> and <math>L_\sigma^{(f)}</math> are, respectively, the upper and lower sums for <math>f</math> relative to <math>\sigma</math>, and <math>U_\sigma^{(g)}</math> and <math>L_\sigma^{(g)}</math> are the same for <math>g</math>. We conclude from the above inequalities that
<math display="block">
\Big| ( U_\sigma^{(f)} + U_\sigma^{(g)} ) - \Big(\int_a^b f + \int_a^b g \Big) \Big|  <  \epsilon, ( 2 )
</math>
<math display="block">
\Big| \Big(\int_a^b f + \int_a^b g \Big) - (L_\sigma^{(f)} + L_\sigma^{(g)}) \Big|  <  \epsilon . ( 3 )
</math>
Let  <math>[x_{i-1}, x_i]</math> be the ith subinterval of the partition <math>\sigma</math>. We denote by <math>M_i^{(f)}</math> and <math>M_i^{(g)}</math> the least upper bounds of the values of <math>f</math> and of <math>g</math>, respectively, on
<math>[x_{i-1}, x_i]</math>, and by <math>m_i^{(f)}</math> and <math>m_i^{(g)}</math> the analogous greatest lower bounds. Then
<math display="block">
m_i^{(f)} + m_i^{(g)} \leq f(x) + g(x) \leq M_i^{(f)} + M_i^{(g)},
</math>
for every <math>x</math> in <math>[x_{i-1}, x_i]</math>. It follows that
<math display="block">
m_i^{(f)} + m_i^{(g)} \leq m_i^{(f+g)} \leq M_i^{(f+g)} \leq M_i^{(f)} + M_i^{(g)} ,
</math>
where <math>m_i^{(f+g)}</math> and <math>M_i^{(f+g)}</math> are, respectively, the greatest lower bound and the least upper bound of the values of <math>f + g</math> on <math>[x_{i-1}, x_i]</math>. By multiplying each term in the preceding chain of inequalities by <math>(x_i - x_{i-1})</math> and then summing on <math>i</math>, we obtain
<math display="block">
L_\sigma^{(f)} + L_\sigma^{(g)} \leq L_\sigma^{(f+g)} \leq U_\sigma^{(f+g)} \leq U_\sigma^{(f)} + U_\sigma^{(g)},  (4 )
</math>
where <math>U_\sigma^{(f+g)}</math> and <math>L_\sigma^{(f+g)}</math> are the upper and lower sums, respectively, for <math>f + g</math> relative to <math>\sigma</math>. The inequalities (2), (3), and (4) imply that
<math display="block">
\begin{eqnarray*}
\Big| U_\sigma^{(f+g)} - \Big(\int_a^b f + \int_a^b g \Big) \Big|  <  \epsilon, \\
\Big| \Big(\int_a^b f + \int_a^b g \Big) - L_\sigma^{(f+g)} \Big|  <  \epsilon .
\end{eqnarray*}
</math>
It follows from these two inequalities that the function <math>f + g</math> is integrable over <math>[a, b]</math> and that
<math display="block">
\int_a^b (f + g) = \int_a^b f + \int_a^b g.
</math>
This completes the proof of Theorem 2.}}
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Latest revision as of 02:07, 21 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here. Let [math]f[/math] be a function which is bounded on a closed interval [math][a, b][/math]. This implies that [math][a, b][/math] is contained in the domain of [math]f[/math] and that there exists a positive number [math]B[/math] such that [math]|f(x)| \lt B[/math] for all [math]x[/math] in [math][a, b][/math]. We recall that, for every partition [math]\sigma[/math] of [math][a, b][/math], there are defined the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], which are denoted by [math]U_\sigma[/math] and [math]L_\sigma[/math], respectively. Moreover, it has been shown (see page 168) that

[[math]] L_\sigma \leq L_{\sigma \cup \tau} \leq U_{\sigma \cup \tau} \leq U_\tau, ( 1 ) [[/math]]

for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. The function [math]f[/math] is defined to be integrable over [math][a, b][/math] if there exists one and only one number, denoted [math]\int_a^b f[/math], with the property that

[[math]] L_\sigma \leq \int_a^b f \leq U_\tau , [[/math]]

for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. It is an immediate consequence of this definition and the inequalities (1) that [math]f[/math] is integrable over [math][a, b][/math] if and only if, for any positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. A similar corollary, which we shall also usebin the subsequent proofs, is the statement that [math]f[/math] is integrable over [math][a, b][/math] and [math]\int_a^b f = J[/math] if and only if, for every positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]|U_\sigma - J| \lt \epsilon[/math] and [math]|J - L_\sigma| \lt \epsilon[/math].

The first property of the definite integral, which we shall establish in this section, is presented in the following theorem:

THEOREM 1

The function [math]f[/math] is integrable over the intervals [math][a, b][/math] and [math][b, c][/math] if and only if it is integrable over their union [math][a, c][/math]. Furthermore,

[[math]] \int_a^b f + \int_b^c f = \int_a^c f. [[/math]]

Show Proof

We first assume that [math]f[/math] is integrable over [math][a, b][/math] and over [math][b, c][/math]. Let [math]\epsilon[/math] be an arbitrary positive number. Then there exists a partition [math]\sigma_1[/math] of [math][a, b][/math], and a partition [math]\sigma_2[/math] of [math][b, c][/math] such that the following inequalities hold:

[[math]] \begin{eqnarray*} \Big| U_{\sigma_1} - \int_a^b f \Big| \lt \frac{\epsilon}{2} , \;\;\; \Big| \int_a^b - L_{\sigma_1} f \Big| \lt \frac{\epsilon}{2} , \\ \Big| U_{\sigma_2} - \int_b^c f \Big| \lt \frac{\epsilon}{2} , \;\;\; \Big| \int_b^c - L_{\sigma_2} f \Big| \lt \frac{\epsilon}{2} . \end{eqnarray*} [[/math]]
It follows from these that

[[math]] \begin{eqnarray*} \Big| (U_{\sigma_1} + U_{\sigma_2}) - \Big( \int_a^b f + \int_b^c f \Big) \Big| \lt \epsilon ,\\ \Big| \Big(\int_a^b f + \int_b^c f \Big) - \Big(L_{\sigma_1} + L_{\sigma_2} \Big) \Big| \lt \epsilon . \end{eqnarray*} [[/math]]
Let us set [math]{\sigma_1} \cup {\sigma_2} = \sigma[/math]. This union is a partition of [math][a, c][/math], and it is obvious that

[[math]] \begin{eqnarray*} U_{\sigma_1} + U_{\sigma_2} = U_\sigma, \\ L_{\sigma_1} + L_{\sigma_2} = L_\sigma . \end{eqnarray*} [[/math]]
Hence

[[math]] \begin{eqnarray*} \Big| U_\sigma - \Big(\int_a^b f + \int_b^c f \Big) \Big| \leq \epsilon, \\ \Big| \Big(\int_a^b f + \int_b^c f \Big) - L_\sigma \Big| \leq \epsilon . \end{eqnarray*} [[/math]]
These inequalities imply that [math]f[/math] is integrable over [math][a, c][/math] and also that

[[math]] \int_a^c f = \int_a^b f + \int_b^c f . [[/math]]

It remains to prove that, if [math]f[/math] is integrable over [math][a, c][/math], then it is integrable over [math][a, b][/math] and over [math][b, c][/math]. We choose an arbitrary positive number [math]\epsilon[/math]. Since [math]f[/math] is integrable over [math][a, c][/math], there exists a partition [math]\sigma[/math] of [math][a, c][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. Let us form a refinement of the partition [math]\sigma[/math] by adjoining the number [math]b[/math]. That is, we set

[[math]] \sigma' = \sigma \cup \{ b \}. [[/math]]
(It is, of course, possible that [math]\sigma[/math] already contains [math]b[/math], in which case [math]\sigma' = \sigma[/math].) Then

[[math]] L_\sigma \leq L_{\sigma'} \leq U_{\sigma'} \leq U_{\sigma'}, [[/math]]
from which it follows that [math]U_{\sigma'} - L_{\sigma'}, \lt \epsilon[/math]. But, since [math]b[/math] belongs to [math]\sigma'[/math], we can write [math]\sigma' = \sigma_1 \cup \sigma_2[/math], where [math]\sigma_1[/math] is a partition of [math][a, b][/math] and [math]\sigma_2[/math] is a partition of [math][b, c][/math]. Moreover,

[[math]] \begin{eqnarray*} U_{\sigma'} = U_{\sigma_1} + U_{\sigma_2},\\ L_{\sigma'} = L_{\sigma_1} + L_{\sigma_2} . \end{eqnarray*} [[/math]]
Hence

[[math]] (U_{\sigma_1} - L_{\sigma_1}) + (U_{\sigma_2} - L_{\sigma_2}) = U_{\sigma'} - L_{\sigma'} \lt \epsilon, [[/math]]
Since [math]U_{\sigma_1} - L_{\sigma_1}[/math] and [math]U_{\sigma_2} - L_{\sigma_2}[/math] are both nonnegative, it follows that

[[math]] \begin{eqnarray*} U_{\sigma_1} - L_{\sigma_1} \lt \epsilon,\\ U_{\sigma_2} - L_{\sigma_2} \lt \epsilon . \end{eqnarray*} [[/math]]
The first of these inequalities implies that [math]f[/math] is integrable over [math][a, b][/math], and the second that [math]f[/math] is integrable over [math][b, c][/math]. This completes the proof of Theorem 1.

The second result to be proved is the following:

THEOREM 2

If [math]f[/math] and [math]g[/math] are integrable over [math][a, b][/math], then so is their sum and

[[math]] \int_a^b (f + g) = \int_a^b f + \int_a^b g . [[/math]]

Show Proof

Let [math]\epsilon[/math] be an arbitrary positive number. By taking, if necessary, the common refinement [math]\sigma_1 \cup \sigma_2[/math] of two partitions of [math][a, b][/math], we may select a partition [math]\sigma[/math] of [math][a, b][/math] such that

[[math]] \begin{array}{ll} \Big| U_\sigma^{(f)} - \int_a^b f \Big| \lt \frac{\epsilon}{2} , \;\;\;& \Big| \int_a^b f - L_\sigma^{(f)} \Big| \lt \frac{\epsilon}{2} , \\ \Big| U_\sigma^{(g)} - \int_a^b g \Big| \lt \frac{\epsilon}{2},\;\;\;& \Big| \int_a^b g - L_\sigma^{(g)} \Big| \lt \frac{\epsilon}{2} , \end{array} [[/math]]
where [math]U_\sigma^{(f)}[/math] and [math]L_\sigma^{(f)}[/math] are, respectively, the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], and [math]U_\sigma^{(g)}[/math] and [math]L_\sigma^{(g)}[/math] are the same for [math]g[/math]. We conclude from the above inequalities that

[[math]] \Big| ( U_\sigma^{(f)} + U_\sigma^{(g)} ) - \Big(\int_a^b f + \int_a^b g \Big) \Big| \lt \epsilon, ( 2 ) [[/math]]


[[math]] \Big| \Big(\int_a^b f + \int_a^b g \Big) - (L_\sigma^{(f)} + L_\sigma^{(g)}) \Big| \lt \epsilon . ( 3 ) [[/math]]
Let [math][x_{i-1}, x_i][/math] be the ith subinterval of the partition [math]\sigma[/math]. We denote by [math]M_i^{(f)}[/math] and [math]M_i^{(g)}[/math] the least upper bounds of the values of [math]f[/math] and of [math]g[/math], respectively, on [math][x_{i-1}, x_i][/math], and by [math]m_i^{(f)}[/math] and [math]m_i^{(g)}[/math] the analogous greatest lower bounds. Then

[[math]] m_i^{(f)} + m_i^{(g)} \leq f(x) + g(x) \leq M_i^{(f)} + M_i^{(g)}, [[/math]]
for every [math]x[/math] in [math][x_{i-1}, x_i][/math]. It follows that

[[math]] m_i^{(f)} + m_i^{(g)} \leq m_i^{(f+g)} \leq M_i^{(f+g)} \leq M_i^{(f)} + M_i^{(g)} , [[/math]]
where [math]m_i^{(f+g)}[/math] and [math]M_i^{(f+g)}[/math] are, respectively, the greatest lower bound and the least upper bound of the values of [math]f + g[/math] on [math][x_{i-1}, x_i][/math]. By multiplying each term in the preceding chain of inequalities by [math](x_i - x_{i-1})[/math] and then summing on [math]i[/math], we obtain

[[math]] L_\sigma^{(f)} + L_\sigma^{(g)} \leq L_\sigma^{(f+g)} \leq U_\sigma^{(f+g)} \leq U_\sigma^{(f)} + U_\sigma^{(g)}, (4 ) [[/math]]
where [math]U_\sigma^{(f+g)}[/math] and [math]L_\sigma^{(f+g)}[/math] are the upper and lower sums, respectively, for [math]f + g[/math] relative to [math]\sigma[/math]. The inequalities (2), (3), and (4) imply that

[[math]] \begin{eqnarray*} \Big| U_\sigma^{(f+g)} - \Big(\int_a^b f + \int_a^b g \Big) \Big| \lt \epsilon, \\ \Big| \Big(\int_a^b f + \int_a^b g \Big) - L_\sigma^{(f+g)} \Big| \lt \epsilon . \end{eqnarray*} [[/math]]
It follows from these two inequalities that the function [math]f + g[/math] is integrable over [math][a, b][/math] and that

[[math]] \int_a^b (f + g) = \int_a^b f + \int_a^b g. [[/math]]
This completes the proof of Theorem 2.

General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.