exercise:Dc76246b0e: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 35: Line 35:


<math display="block">
<math display="block">
\cond{f(x)= x^2 + x + 1, -\infty  <  x  <  \infty}
f(x)= x^2 + x + 1,   -\infty  <  x  <  \infty
,
,
</math>
</math>


<math display="block">
<math display="block">
\cond{g(x)= \frac{x + 1}{x - 1}, & \mbox{for every real number $x$ except <math>x=1</math>}}
g(x)= \frac{x + 1}{x - 1}, \mbox{for every real number $x$ except $x=1$}.
.
</math>
</math>
Find:
Find:
<ul style{{=}}"list-style-type:lower-alpha"><li><math>f(2)</math>, <math>f(0)</math>, <math>f(a)</math>, <math>f(a + b)</math>, <math>f(a - b)</math>.</li>
<ul style{{=}}"list-style-type:lower-alpha"><li><math>f(2)</math>, <math>f(0)</math>, <math>f(a)</math>, <math>f(a + b)</math>, <math>f(a - b)</math>.</li>
<li><math>g(0)</math>, <math>g(-1)</math>, <math>g(10)</math>, <math>g(5 + t)</math>, <math>g(x^3)</math>.</li>
<li><math>g(0)</math>, <math>g(-1)</math>, <math>g(10)</math>, <math>g(5 + t)</math>, <math>g(x^3)</math>.</li>
</ul>
</ul>

Latest revision as of 22:44, 22 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]f[/math] and [math]g[/math] be two functions defined, respectively, by

[[math]] f(x)= x^2 + x + 1, -\infty \lt x \lt \infty , [[/math]]

[[math]] g(x)= \frac{x + 1}{x - 1}, \mbox{for every real number $x$ except $x=1$}. [[/math]]

Find:

  • [math]f(2)[/math], [math]f(0)[/math], [math]f(a)[/math], [math]f(a + b)[/math], [math]f(a - b)[/math].
  • [math]g(0)[/math], [math]g(-1)[/math], [math]g(10)[/math], [math]g(5 + t)[/math], [math]g(x^3)[/math].