exercise:Cce54a0398: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
The velocity <math>v</math> of a freely falling body depends on the distance
 
<math>s</math> that it has fallen according to the equation <math>v = \sqrt{2gs}</math>,
The velocity <math>v</math> of a freely falling body depends on the distance <math>s</math> that it has fallen according to the equation <math>v = \sqrt{2gs}</math>,
where <math>g</math> is the constant gravitational acceleration.
where <math>g</math> is the constant gravitational acceleration.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
 
<li>lab{1.3.7a}
<ul style{{=}}"list-style-type:lower-alpha">
Using an <math>s</math>-axis and a <math>v</math>-axis, plot the dependent variable <math>v</math>
<li id="ex1.3.7a">Using an <math>s</math>-axis and a <math>v</math>-axis, plot the dependent variable <math>v</math> as a function of the independent variable <math>s</math>.</li>
as a function of the independent variable <math>s</math>.</li>
<li id="ex1.3.7b">If <math>s</math> depends on the time <math>t</math> according to the equation <math>s=\frac12gt^2</math>, how does <math>v</math> depend on <math>t</math>?</li>
<li></li>
<li>lab{1.3.7b}
If <math>s</math> depends on the time <math>t</math> according to the equation
<math>s=\frac12gt^2</math>, how does <math>v</math> depend on <math>t</math>?</li>
</ul>
</ul>
Note that the variable <math>v</math> in \ref{ex1.3.7a},
 
which depends on <math>s</math>, is not the same function as the
Note that the variable <math>v</math>, which depends on <math>s</math>, is not the same function as the variable <math>v</math>, which depends on <math>t</math>. Without knowing which is referred to, the meaning of the value of <math>v</math> at 2 is ambiguous.
variable <math>v</math> in \ref{ex1.3.7b}, which depends on <math>t</math>.
Without knowing which is referred to, the meaning of the value of
<math>v</math> at 2 is ambiguous.

Latest revision as of 22:54, 22 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

The velocity [math]v[/math] of a freely falling body depends on the distance [math]s[/math] that it has fallen according to the equation [math]v = \sqrt{2gs}[/math], where [math]g[/math] is the constant gravitational acceleration.

  • Using an [math]s[/math]-axis and a [math]v[/math]-axis, plot the dependent variable [math]v[/math] as a function of the independent variable [math]s[/math].
  • If [math]s[/math] depends on the time [math]t[/math] according to the equation [math]s=\frac12gt^2[/math], how does [math]v[/math] depend on [math]t[/math]?

Note that the variable [math]v[/math], which depends on [math]s[/math], is not the same function as the variable [math]v[/math], which depends on [math]t[/math]. Without knowing which is referred to, the meaning of the value of [math]v[/math] at 2 is ambiguous.