exercise:4160af81f0: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 34: Line 34:
Let <math>n</math> be a positive integer.
Let <math>n</math> be a positive integer.
<ul style{{=}}"list-style-type:lower-alpha"><li>Evaluate <math>\int_a^b x^n \; dx</math>.</li>
<ul style{{=}}"list-style-type:lower-alpha"><li>Evaluate <math>\int_a^b x^n \; dx</math>.</li>
<li></li>
<li>Evaluate <math>\int_a^b \frac1{x^n} \; dx</math> provided (i) <math>n \ne 1</math>, and (ii) <math>a</math> and <math>b</math> are either
<li>lab{4.5.4b}
Evaluate <math>\int_a^b \frac1{x^n} \; dx</math> provided
(i) <math>n \ne 1</math>, and (ii) <math>a</math> and <math>b</math> are either
both positive or both negative.</li>
both positive or both negative.</li>
<li>In \ref{ex4.5.4b}, what is the reason for proviso (i)?
<li>In (b), what is the reason for proviso (i)? For provision (ii)?</li>
For proviso (ii)?</li>
</ul>
</ul>

Latest revision as of 22:08, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]n[/math] be a positive integer.

  • Evaluate [math]\int_a^b x^n \; dx[/math].
  • Evaluate [math]\int_a^b \frac1{x^n} \; dx[/math] provided (i) [math]n \ne 1[/math], and (ii) [math]a[/math] and [math]b[/math] are either both positive or both negative.
  • In (b), what is the reason for proviso (i)? For provision (ii)?