exercise:05c9c52e1f: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 33: Line 33:
</math></div>
</math></div>
Let <math>F(t) = \int_0^t (6x^2 - 4x + 1) \; dx</math>.
Let <math>F(t) = \int_0^t (6x^2 - 4x + 1) \; dx</math>.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{4.5.7a}
<li>
Using just the Fundamental Theorem and without evaluating
Using just the Fundamental Theorem and without evaluating
<math>F</math>, find <math>F^\prime(t)</math>, <math>F^\prime(-1)</math>, <math>F^\prime(2)</math>,
<math>F</math>, find <math>F^\prime(t)</math>, <math>F^\prime(-1)</math>, <math>F^\prime(2)</math>,
and <math>F^\prime(x)</math>.</li>
and <math>F^\prime(x)</math>.</li>
<li></li>
<li>Find <math>F(t)</math> as a polynomial in <math>t</math> by finding a polynomial
<li>lab{4.5.7b}
Find <math>F(t)</math> as a polynomial in <math>t</math> by finding a polynomial
which is an antiderivative of <math>6x^2 - 4x + 1</math>.</li>
which is an antiderivative of <math>6x^2 - 4x + 1</math>.</li>
<li>Differentiate the answer in \ref{ex4.5.7b},
<li>Differentiate the answer in (b)
and thereby check \ref{ex4.5.7a}.</li>
and thereby check (a).</li>
</ul>
</ul>

Latest revision as of 21:06, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]F(t) = \int_0^t (6x^2 - 4x + 1) \; dx[/math].

  • Using just the Fundamental Theorem and without evaluating [math]F[/math], find [math]F^\prime(t)[/math], [math]F^\prime(-1)[/math], [math]F^\prime(2)[/math], and [math]F^\prime(x)[/math].
  • Find [math]F(t)[/math] as a polynomial in [math]t[/math] by finding a polynomial which is an antiderivative of [math]6x^2 - 4x + 1[/math].
  • Differentiate the answer in (b) and thereby check (a).