exercise:60af2b75f8: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Assume that <math>a  >  1</math>.
Assume that <math>a  >  1</math>.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{5.4.11a}
<li>
Using the definition of <math>a^x</math>, show that
Using the definition of <math>a^x</math>, show that


Line 41: Line 42:
.
.
</math></li>
</math></li>
<li></li>
 
<li>lab{5.4.11b}
<li>
Using the result of \ref{ex5.4.11a}, prove that
Using the result of (a), prove that


<math display="block">
<math display="block">
Line 49: Line 50:
.
.
</math></li>
</math></li>
<li></li>
 
<li>lab{5.4.11c}
<li>
Using \ref{ex5.4.11a}, show that
Using (a), show that


<math display="block">
<math display="block">
Line 57: Line 58:
.
.
</math></li>
</math></li>
<li></li>
<li>
<li>lab{5.4.11d}
Using (b), show that
Using \ref{ex5.4.11b}, show that


<math display="block">
<math display="block">
Line 65: Line 65:
.
.
</math></li>
</math></li>
<li>What do \ref{ex5.4.11a}, \ref{ex5.4.11b}, \ref{ex5.4.11c},
<li>What do (a), (b), (c), and (d) say geometrically about the graph of the function <math>a^x</math>?</li>
and \ref{ex5.4.11d} say geometrically about the graph
of the function <math>a^x</math>?</li>
</ul>
</ul>

Latest revision as of 22:38, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Assume that [math]a \gt 1[/math].

  • Using the definition of [math]a^x[/math], show that
    [[math]] \lim_{x\goesto\infty} a^x = \infty . [[/math]]
  • Using the result of (a), prove that
    [[math]] \lim_{x\goesto-\infty} a^x = 0 . [[/math]]
  • Using (a), show that
    [[math]] \lim_{x\goesto\infty} \frac{d}{dx} a^x = \infty . [[/math]]
  • Using (b), show that
    [[math]] \lim_{x\goesto-\infty} \frac{d}{dx} a^x = 0 . [[/math]]
  • What do (a), (b), (c), and (d) say geometrically about the graph of the function [math]a^x[/math]?