exercise:7624a01247: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Each of the propositions
 
\ref{thm 8.1.2}, \ref{thm 8.1.3}, \ref{thm 8.1.4},
Each of the propositions [[guide:66c44a0b4c#theorem-2|proposition]], [[guide:66c44a0b4c#theorem-3|proposition]], [[guide:66c44a0b4c#theorem-4|proposition]], and [[guide:66c44a0b4c#theorem-5|proposition]] corresponds to one of the basic properties of the definite integral as they are enumerated in Theorems [[guide:239bf7acf2#theorem-1|theorem]] through [[guide:239bf7acf2#theorem-5|theorem]]. In general, the proof of each is obtained by checking the special case <math>a=b</math> separately and then using the formula
and \ref{thm 8.1.5} corresponds to one of the
basic properties of the definite integral
as they are enumerated in Theorems
\ref{thm 4.4.1} through \ref{thm 4.4.5}.
In general, the proof of each is obtained by
checking the special case <math>a=b</math>
separately and then using the formula


<math display="block">
<math display="block">
Line 49: Line 42:
together with the appropriate property
together with the appropriate property
of the integral.
of the integral.
<ul style{{=}}"list-style-type:lower-alpha"><li>Prove \ref{thm 8.1.2}</li>
 
<li>Prove \ref{thm 8.1.3}</li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>Prove \ref{thm 8.1.5}.</li>
<li>Prove [[guide:66c44a0b4c#theorem-2|proposition]]</li>
<li>Prove [[guide:66c44a0b4c#theorem-3|proposition]]</li>
<li>Prove [[guide:66c44a0b4c#theorem-5|proposition]]</li>
</ul>
</ul>

Latest revision as of 14:28, 24 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Each of the propositions proposition, proposition, proposition, and proposition corresponds to one of the basic properties of the definite integral as they are enumerated in Theorems theorem through theorem. In general, the proof of each is obtained by checking the special case [math]a=b[/math] separately and then using the formula

[[math]] M_a^b(f) = \frac1{b-a} \int_a^b f(x)\;dx, \quad \mbox{for $a \lt b$} , [[/math]]

together with the appropriate property of the integral.