exercise:F752e96684: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{10.6.2a}
<li>
For each of the following values of <math>\theta</math>,
For each of the following values of <math>\theta</math>,
find the value of <math>r</math> such that
find the value of <math>r</math> such that
Line 44: Line 44:
</math></li>
</math></li>
<li>Plot the seven points with the polar coordinates
<li>Plot the seven points with the polar coordinates
<math>(r,\theta)</math>, found in part \ref{ex10.6.2a}.</li>
<math>(r,\theta)</math>, found in part (a).</li>
<li></li>
<li>
<li>lab{10.6.2c}
What symmetry property is possessed by the
What symmetry property is possessed by the
curve defined by the equation
curve defined by the equation
<math>r=2(1+\cos\theta)</math> in polar coordinates?</li>
<math>r=2(1+\cos\theta)</math> in polar coordinates?</li>
<li>Draw the curve in part \ref{ex10.6.2c}.</li>
<li>Draw the curve in part (c).</li>
</ul>
</ul>

Latest revision as of 00:08, 26 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • For each of the following values of [math]\theta[/math], find the value of [math]r[/math] such that [math]r = 2(1+\cos \theta)[/math]:
    [[math]] \theta = 0, \frac\pi4, \frac\pi3, \frac\pi2, \frac{2\pi}3, \frac{5\pi}6, \pi . [[/math]]
  • Plot the seven points with the polar coordinates [math](r,\theta)[/math], found in part (a).
  • What symmetry property is possessed by the curve defined by the equation [math]r=2(1+\cos\theta)[/math] in polar coordinates?
  • Draw the curve in part (c).