guide:Fee760f50f: Difference between revisions
No edit summary |
mNo edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 33: | Line 33: | ||
</math></div> | </math></div> | ||
The theorems in Section \secref{1.7} | The theorems in Section \secref{1.7} | ||
were concerned with finding | were concerned with finding | ||
Line 184: | Line 183: | ||
</math> | </math> | ||
and the proof of the Chain Rule is complete.}} | and the proof of the Chain Rule is complete.}} | ||
<span id="exam 1.8.1"/> | <span id="exam 1.8.1"/> | ||
'''Example''' | '''Example''' | ||
If <math>F(x) = (x^2 + 2)^3</math>, compute <math>F'(x)</math>. | If <math>F(x) = (x^2 + 2)^3</math>, compute <math>F'(x)</math>. | ||
One way to do this problem is to expand <math>(x^2 + 2)^3</math> | One way to do this problem is to expand <math>(x^2 + 2)^3</math> | ||
Line 224: | Line 223: | ||
'''Example''' | '''Example''' | ||
Find the derivative of the function <math>(3x^7 + 2x)^{128}</math>. | Find the derivative of the function <math>(3x^7 + 2x)^{128}</math>. | ||
In principle, we could expand by the binomial theorem, | In principle, we could expand by the binomial theorem, | ||
Line 308: | Line 306: | ||
we can certainly take <math>n</math> to be positive.) | we can certainly take <math>n</math> to be positive.) | ||
A proof that <math>x^{1/n}</math> is differentiable, if <math>x > 0</math>, | A proof that <math>x^{1/n}</math> is differentiable, if <math>x > 0</math>, | ||
is most easily given as an application of the | is most easily given as an application of the Inverse Function [[guide:33cbe9f7c1#thm 5.3.4 |Theorem]]. | ||
Inverse Function [[guide:33cbe9f7c1#thm 5.3.4 |Theorem]] | |||
However, the intuitive reason is simple: | However, the intuitive reason is simple: | ||
If <math>y = x^{1/n}</math> and <math>x > 0</math>, | If <math>y = x^{1/n}</math> and <math>x > 0</math>, | ||
Line 324: | Line 321: | ||
It therefore must have a tangent line at every point, | It therefore must have a tangent line at every point, | ||
which means that <math>x^{1/n}</math> is differentiable.}} | which means that <math>x^{1/n}</math> is differentiable.}} | ||
<span id="exam 1.8.3"/> | <span id="exam 1.8.3"/> | ||
'''Example''' | '''Example''' | ||
If <math>y = x^{1/n}</math>, then | If <math>y = x^{1/n}</math>, then | ||
Line 337: | Line 334: | ||
'''Example''' | '''Example''' | ||
Find the derivative of the function <math>F(x) = (3x^2 + 5x + 1)^{5/3}</math>. | Find the derivative of the function <math>F(x) = (3x^2 + 5x + 1)^{5/3}</math>. | ||
If we let <math>f(x) = 3x^2 + 5x + 1</math>, then Theorem (8.2) implies that | If we let <math>f(x) = 3x^2 + 5x + 1</math>, then Theorem (8.2) implies that | ||
Line 386: | Line 383: | ||
Thus far, <math>du</math> is simply a part of the notation for the derivative | Thus far, <math>du</math> is simply a part of the notation for the derivative | ||
and means nothing by itself. | and means nothing by itself. | ||
Note also | Note also \ref{eq1.8.4} is incomplete in the sense that it does not say explicitly at what points to evaluate the derivatives. | ||
is incomplete | |||
in the sense that it does not say explicitly | |||
at what points to evaluate the derivatives. | |||
We can add this information by writing | We can add this information by writing | ||
Line 399: | Line 393: | ||
'''Example''' | '''Example''' | ||
If <math>w = z^2 + 2z + 3</math> and <math>z = \frac{1}{x}</math>, | If <math>w = z^2 + 2z + 3</math> and <math>z = \frac{1}{x}</math>, | ||
find <math>\frac{dw}{dx}(2)</math>. By the Chain Rule, | find <math>\frac{dw}{dx}(2)</math>. By the Chain Rule, | ||
Line 418: | Line 412: | ||
'''Example''' | '''Example''' | ||
Two functions, | Two functions, | ||
which we shall define in Chapter | which we shall define in Chapter [[#guide:Dd79f3038d|Differential Equations]], | ||
are the hyperbolic sine and the hyperbolic cosine, | are the hyperbolic sine and the hyperbolic cosine, | ||
denoted by <math>\sinh x</math> and <math>\cosh x</math> respectively. | denoted by <math>\sinh x</math> and <math>\cosh x</math> respectively. | ||
Line 471: | Line 465: | ||
</math> | </math> | ||
==General references== | ==General references== | ||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} | {{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 22:31, 4 November 2024
The theorems in Section \secref{1.7} were concerned with finding the derivatives of functions that were constructed from other functions using the algebraic operations of addition, multiplication by a constant, multiplication, and division. In this section we shall derive a similar formula, called the Chain Rule, for the derivative of the composition [math]f(g)[/math] of a differentiable function [math]g[/math] with a differentiable function [math]f[/math]. Before giving the theorem, we remark that an alternative way of writing the definition of the derivative of a function [math]f[/math] is
The substitution [math]x = a + t[/math] will transform into the expression that we have heretofore used for the derivative. An equation equivalent to is
We next define a function [math]r[/math] (dependent on both [math]f[/math] and [math]a[/math]) by
Note that the two functions [math]f[/math] and [math]r[/math] have the same domain. Furthermore, as a result of, we have
i.e., the function [math]r[/math] is continuous at [math]a[/math]. From the definition of [math]r[/math], we obtain the equation
which is true for every [math]x[/math] in the domain of [math]f[/math]. We now prove:
If [math]f[/math] and [math]g[/math] are differentiable functions, then so is the composite function [math]f(g)[/math]. Moreover, [math][f(g)]' = f'(g)g'[/math].
Let [math]a[/math] be a number in the domain of [math]g[/math] such that [math]g(a)[/math] is in the domain of [math]f[/math]. By definition
Example
If [math]F(x) = (x^2 + 2)^3[/math], compute [math]F'(x)[/math]. One way to do this problem is to expand [math](x^2 + 2)^3[/math] and use the differentiation formulas developed in Section \secref{1.7}.
Another method uses the Chain Rule. Let [math]g[/math] and [math]f[/math] be the functions defined, respectively, by [math]g(x) = x^2 + 2[/math] and [math]f(y) = y^3[/math]. Then
and, according to the Chain Rule,
Since [math]g'(x) = 2x[/math] and [math]f'(y) = 3y^2[/math], we get [math]f'(g(x)) = 3(x^2 + 2)^2[/math] and
which agrees with the alternative solution above.
Example
Find the derivative of the function [math](3x^7 + 2x)^{128}[/math]. In principle, we could expand by the binomial theorem, but with the Chain Rule at our disposal that would be absurd. Let [math]g(x) = 3x^7 + 2x[/math] and [math]f(y) = y^{128}[/math]. Then [math]g'(x) = 21x^6 + 2[/math] and [math]f'(y) = 128y^{127}[/math]. Setting [math]y = 3x^7 + 2x[/math], we get
The above two examples are instances of the following
corollary of the Chain Rule:
If [math]f[/math] is a differentiable function, then
To prove it, let [math]F(y) = y^n[/math]. Then [math]F(f) = f^n[/math], and we know that [math]F'(y) = ny^{n-1}[/math]. Consequently, [math](f^n)' = [F(f)]' = F'(f) f' = nf^{n-1}f'[/math]. A significant generalization of this result is
If [math]f[/math] is a positive differentiable function and [math]r[/math] is any rational number, then [math](f^r)' = rf^{r-1}f'[/math]. The requirement that [math]f[/math] is positive assures that [math]f^r[/math] is defined. A nonpositive number cannot be raised to an arbitrary rational power. However, as we shall show later (see, the requirement that [math]r[/math] be a rational number is unnecessary. Theorem is actually true for any real number [math]r[/math].
Let [math]r = \frac{m}{n}[/math], where [math]m[/math] and [math]n[/math] are integers, and set [math]h = f^r = f^{m/n}[/math]. Then [math]h^n = (f^{m/n})^n = f^m[/math], which implies that [math](h^n)' = (f^m)'[/math]. Using the above formula for the derivative of an integral power of a function, we get
This completes the proof---almost.
Note that we have in the argument tacitly assumed that [math]h[/math],
the function whose derivative we are seeking, is differentiable.
Is it?
If it is, how do we know it?
The answer to the first question is yes,
but the answer to the second is not so easy.
The problem can be reduced to a simpler one:
If [math]n[/math] is a positive integer
and [math]g[/math] is the function defined by
[math]g(x) = x^{1/n''[/math], for [math]x \gt 0[/math],
then [math]g[/math] is differentiable.}
If we know this fact,
we are out of the difficulty
because the Chain Rule tells us that
the composition of two differentiable functions is differentiable.
Hence [math]g(f)[/math] is differentiable, and [math]g(f) = f^{1/n}[/math].
From this it follows that [math](f^{1/n})^m[/math] is differentiable,
and [math](f^{1/n})^m = f^{m/n}[/math].
(When we express [math]r[/math] as a ratio [math]\frac{m}{n}[/math],
we can certainly take [math]n[/math] to be positive.)
A proof that [math]x^{1/n}[/math] is differentiable, if [math]x \gt 0[/math],
is most easily given as an application of the Inverse Function Theorem.
However, the intuitive reason is simple:
If [math]y = x^{1/n}[/math] and [math]x \gt 0[/math],
then [math]y^n = x[/math],
and by interchanging [math]x[/math] and y we obtain the equation [math]x^n = y[/math].
The latter equation defines a smooth curve
whose slope at every point is given by the derivative
[math]\frac{dy}{dx} = nx^{n-1}[/math].
Interchanging [math]x[/math] and [math]y[/math] amounts geometrically to
a reflection about the line [math]y = x[/math].
We conclude that the original curve [math]y = x^{1/n}, x \gt 0[/math],
has the same intrinsic shape and smoothness
as that defined by [math]y = x^n, y \gt 0[/math].
It therefore must have a tangent line at every point,
which means that [math]x^{1/n}[/math] is differentiable.
Example
If [math]y = x^{1/n}[/math], then
Example
Find the derivative of the function [math]F(x) = (3x^2 + 5x + 1)^{5/3}[/math].
If we let [math]f(x) = 3x^2 + 5x + 1[/math], then Theorem (8.2) implies that
With the [math]\frac{d}{dx}[/math] notation for the derivative,
the Chain Rule can be written in a form that is impossible to forget.
Let [math]f[/math] and [math]g[/math] be two differentiable functions.
The formation of the composite function [math]f(g)[/math]
is suggested by writing [math]u = g(x)[/math] and [math]y = f(u)[/math].
Thus [math]x[/math] is transformed by [math]g[/math] into [math]u[/math],
and the resulting [math]u[/math] is then transformed by
[math]f[/math] into [math]y = f(u) = f(g(x))[/math].
We have
By the Chain Rule, [math][f(g(x))]' = f'(g(x))g'(x) = f'(u)g'(x)[/math], and so
The idea that one can simply cancel out [math]du[/math] in is very appealing and accounts for the popularity of the notation. It is important to realize that the cancellation is valid because the Chain Rule is true, and not vice versa. Thus far, [math]du[/math] is simply a part of the notation for the derivative and means nothing by itself. Note also \ref{eq1.8.4} is incomplete in the sense that it does not say explicitly at what points to evaluate the derivatives. We can add this information by writing
Example
If [math]w = z^2 + 2z + 3[/math] and [math]z = \frac{1}{x}[/math],
find [math]\frac{dw}{dx}(2)[/math]. By the Chain Rule,
When [math]x = 2[/math], we have [math]z = \frac {1}{2}[/math]. Hence
Example
Two functions,
which we shall define in Chapter Differential Equations,
are the hyperbolic sine and the hyperbolic cosine,
denoted by [math]\sinh x[/math] and [math]\cosh x[/math] respectively.
These functions are differentiable and have the interesting property that
Furthermore, [math]\sinh (0) = 0[/math] and [math]\cosh (0) = 1[/math]. Compute the derivatives at [math]x= 0[/math] of (a) [math](\cosh x)^2[/math], (b) the composite function [math]\sinh (\sinh x)[/math]. By, we obtain for (a)
and so
Part (b) requires the full force of the Chain Rule: Setting [math]u = \sinh x[/math], we obtain
or
Hence
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.