exercise:261509e67f: Difference between revisions
From Stochiki
(Created page with "For a special fully continuous whole life insurance on <math>(x)</math>, you are given: i) <math>\quad \mu_{x+t}=0.03, t \geq 0</math> ii) <math>\delta=0.06</math> iii) The death benefit at time <math>t</math> is <math>b_{t}=e^{0.05 t}, t \geq 0</math> iv) <math>Z</math> is the present value random variable at issue for this insurance Calculate <math>\operatorname{Var}(Z)</math>. A. 0.0300 B. 0.0325 C. 0.0350 D. 0.0375 E. 0.0400") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
For a special fully continuous whole life insurance on <math>(x)</math>, you are given: | For a special fully continuous whole life insurance on <math>(x)</math>, you are given: | ||
i) <math> | i) <math> \mu_{x+t}=0.03, t \geq 0</math> | ||
ii) <math>\delta=0.06</math> | ii) <math>\delta=0.06</math> | ||
Line 10: | Line 10: | ||
Calculate <math>\operatorname{Var}(Z)</math>. | Calculate <math>\operatorname{Var}(Z)</math>. | ||
<ul class="mw-excansopts"><li> 0.300</li><li>0.325 </li><li> 0.350</li><li> 0.375</li><li> 0.400</li></ul> | |||
{{soacopyright|2024}} | |||
Latest revision as of 12:47, 18 January 2024
For a special fully continuous whole life insurance on [math](x)[/math], you are given:
i) [math] \mu_{x+t}=0.03, t \geq 0[/math]
ii) [math]\delta=0.06[/math]
iii) The death benefit at time [math]t[/math] is [math]b_{t}=e^{0.05 t}, t \geq 0[/math]
iv) [math]Z[/math] is the present value random variable at issue for this insurance
Calculate [math]\operatorname{Var}(Z)[/math].
- 0.300
- 0.325
- 0.350
- 0.375
- 0.400