guide:B6a5cd7faf: Difference between revisions

From Stochiki
No edit summary
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\indep}[0]{\ensuremath{\perp\!\!\!\perp}}
\newcommand{\dpartial}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand\autoop{\left(}
\newcommand\autocp{\right)}
\newcommand\autoob{\left[}
\newcommand\autocb{\right]}
\newcommand{\vecbr}[1]{\langle #1 \rangle}
\newcommand{\ui}{\hat{\imath}}
\newcommand{\uj}{\hat{\jmath}}
\newcommand{\uk}{\hat{k}}
\newcommand{\V}{\vec{V}}
\newcommand{\half}[1]{\frac{#1}{2}}
\newcommand{\recip}[1]{\frac{1}{#1}}
\newcommand{\invsqrt}[1]{\recip{\sqrt{#1}}}
\newcommand{\halfpi}{\half{\pi}}
\newcommand{\windbar}[2]{\Big|_{#1}^{#2}}
\newcommand{\rightinfwindbar}[0]{\Big|_{0}^\infty}
\newcommand{\leftinfwindbar}[0]{\Big|_{-\infty}^0}
\newcommand{\state}[1]{\large\protect\textcircled{\textbf{\small#1}}}
\newcommand{\shrule}{\\ \centerline{\rule{13cm}{0.4pt}}}
\newcommand{\tbra}[1]{$\bra{#1}$}
\newcommand{\tket}[1]{$\ket{#1}$}
\newcommand{\tbraket}[2]{$\braket{1}{2}$}
\newcommand{\infint}[0]{\int_{-\infty}^{\infty}}
\newcommand{\rightinfint}[0]{\int_0^\infty}
\newcommand{\leftinfint}[0]{\int_{-\infty}^0}
\newcommand{\wavefuncint}[1]{\infint|#1|^2}
\newcommand{\ham}[0]{\hat{H}}
\newcommand{\mathds}{\mathbb}</math></div>
In this chapter, we have learned about the following topics:
<ul><li> Average treatment effect;
  </li>
<li> Regression for causal inference;
  </li>
<li> Randomized controlled trials;
  </li>
<li> Outcome maximization with a bandit algorithm;
  </li>
<li> A contextual bandit.
</li>
</ul>


==General references==
{{cite arXiv|last1=Cho|first1=Kyunghyun|year=2024|title=A Brief Introduction to  Causal Inference in Machine Learning|eprint=2405.08793|class=cs.LG}}

Latest revision as of 23:53, 18 May 2024

[math] \newcommand{\indep}[0]{\ensuremath{\perp\!\!\!\perp}} \newcommand{\dpartial}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand\autoop{\left(} \newcommand\autocp{\right)} \newcommand\autoob{\left[} \newcommand\autocb{\right]} \newcommand{\vecbr}[1]{\langle #1 \rangle} \newcommand{\ui}{\hat{\imath}} \newcommand{\uj}{\hat{\jmath}} \newcommand{\uk}{\hat{k}} \newcommand{\V}{\vec{V}} \newcommand{\half}[1]{\frac{#1}{2}} \newcommand{\recip}[1]{\frac{1}{#1}} \newcommand{\invsqrt}[1]{\recip{\sqrt{#1}}} \newcommand{\halfpi}{\half{\pi}} \newcommand{\windbar}[2]{\Big|_{#1}^{#2}} \newcommand{\rightinfwindbar}[0]{\Big|_{0}^\infty} \newcommand{\leftinfwindbar}[0]{\Big|_{-\infty}^0} \newcommand{\state}[1]{\large\protect\textcircled{\textbf{\small#1}}} \newcommand{\shrule}{\\ \centerline{\rule{13cm}{0.4pt}}} \newcommand{\tbra}[1]{$\bra{#1}$} \newcommand{\tket}[1]{$\ket{#1}$} \newcommand{\tbraket}[2]{$\braket{1}{2}$} \newcommand{\infint}[0]{\int_{-\infty}^{\infty}} \newcommand{\rightinfint}[0]{\int_0^\infty} \newcommand{\leftinfint}[0]{\int_{-\infty}^0} \newcommand{\wavefuncint}[1]{\infint|#1|^2} \newcommand{\ham}[0]{\hat{H}} \newcommand{\mathds}{\mathbb}[/math]

In this chapter, we have learned about the following topics:

  • Average treatment effect;
  • Regression for causal inference;
  • Randomized controlled trials;
  • Outcome maximization with a bandit algorithm;
  • A contextual bandit.

General references

Cho, Kyunghyun (2024). "A Brief Introduction to Causal Inference in Machine Learning". arXiv:2405.08793 [cs.LG].