exercise:Dfadfac430: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...") |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | <div class="d-none"><math> | ||
\newcommand{\smallfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\medfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\textfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\smallfrac}[2] | |||
\newcommand{\medfrac}[2] | |||
\newcommand{\textfrac}[2] | |||
\newcommand{\tr}{\operatorname{tr}} | \newcommand{\tr}{\operatorname{tr}} | ||
\newcommand{\e}{\operatorname{e}} | \newcommand{\e}{\operatorname{e}} | ||
\newcommand{\B}{\operatorname{B}} | \newcommand{\B}{\operatorname{B}} | ||
\newcommand{\Bbar}{\ | \newcommand{\Bbar}{\overline{\operatorname{B}}} | ||
\newcommand{\pr}{\operatorname{pr}} | \newcommand{\pr}{\operatorname{pr}} | ||
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | ||
Line 33: | Line 12: | ||
\newcommand{\V}{\operatorname{V}} | \newcommand{\V}{\operatorname{V}} | ||
\newcommand{\Cov}{\operatorname{Cov}} | \newcommand{\Cov}{\operatorname{Cov}} | ||
\newcommand{\Bigsum}[2] | \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} | ||
\newcommand{\ran}{\operatorname{ran}} | \newcommand{\ran}{\operatorname{ran}} | ||
\newcommand{\card}{\#} | \newcommand{\card}{\#} | ||
\ | \renewcommand{\P}{\operatorname{P}} | ||
\renewcommand{\L}{\operatorname{L}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
(Classic example for a Chernoff bound) Let <math>Y_1,\dots,Y_n</math> be independent Bernoulli random variables with <math>\P[X_i=1]=p\in[0,1]</math> and <math>Y=Y_1+\cdots+Y_n</math>. Let <math>\delta > 0</math>. | |||
<ul style="list-style-type:lower-roman"><li> Show that <math>\E(\exp(tY_i))\leqslant\exp(p(\exp(t)-1))</math> holds for every <math>t > 0</math>. | <ul style="list-style-type:lower-roman"><li> Show that <math>\E(\exp(tY_i))\leqslant\exp(p(\exp(t)-1))</math> holds for every <math>t > 0</math>. | ||
</li> | </li> | ||
<li> Use [[#CHERNOFF-RECEIPE |Lemma]] to conclude the following classic Chernoff bound | <li> Use [[guide:B846f441d7#CHERNOFF-RECEIPE |Lemma]] to conclude the following classic Chernoff bound | ||
<math display="block"> | <math display="block"> | ||
Line 51: | Line 29: | ||
</math> | </math> | ||
''Hint: ''It is often not necessary to compute the infimum in [[guide:B846f441d7#CHERNOFF-RECEIPE |Lemma]] explicitly. Here, one can for example simply choose <math>t=\log(1+\delta)</math>. | |||
''Hint: ''It is often not necessary to compute the infimum in [[#CHERNOFF-RECEIPE |Lemma]] explicitly. Here, one can for example simply choose <math>t=\log(1+\delta)</math>. | |||
</li> | </li> | ||
<li> Assume you are rolling a fair dice <math>n</math> times. Apply (ii) to estimate the probability to roll a six in at least 70 | <li> Assume you are rolling a fair dice <math>n</math> times. Apply (ii) to estimate the probability to roll a six in at least 70% of the experiments. | ||
</li> | </li> |
Latest revision as of 01:14, 2 June 2024
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}[/math]
(Classic example for a Chernoff bound) Let [math]Y_1,\dots,Y_n[/math] be independent Bernoulli random variables with [math]\P[X_i=1]=p\in[0,1][/math] and [math]Y=Y_1+\cdots+Y_n[/math]. Let [math]\delta \gt 0[/math].
- Show that [math]\E(\exp(tY_i))\leqslant\exp(p(\exp(t)-1))[/math] holds for every [math]t \gt 0[/math].
- Use Lemma to conclude the following classic Chernoff bound
[[math]] \P\bigl[X\geqslant(1+\delta)np\bigr]\leqslant\Bigl(\smallfrac{\e^{\delta}}{(1+\delta)^{1+\delta}}\Bigr)^{np}. [[/math]]Hint: It is often not necessary to compute the infimum in Lemma explicitly. Here, one can for example simply choose [math]t=\log(1+\delta)[/math].
- Assume you are rolling a fair dice [math]n[/math] times. Apply (ii) to estimate the probability to roll a six in at least 70% of the experiments.
- Compare the estimate of (ii) with what you get when applying the Markov bound respectively the Chebychev bound, instead. Run a simulation of the experiment to test how tight the predictions of the three bounds are.