exercise:D0665476ff: Difference between revisions

From Stochiki
(Created page with "The random variables <math>X,Y</math> have the joint density function <math display = "block"> f_{X,Y}(x,y) = \begin{cases} c xy \, e^{-xy}, 1 < x < y \\ 0, \, \textrm{Other...")
 
No edit summary
 
Line 9: Line 9:
for a constant <math>c</math>. Determine the joint density function for the random variables <math>W = Y^{-1}, Z = X^{-1}.</math>
for a constant <math>c</math>. Determine the joint density function for the random variables <math>W = Y^{-1}, Z = X^{-1}.</math>


<ol style="list-style-type:upper-alpha">
<ul class="mw-excansopts">
<li><math display = "block">
<li><math display = "block">


Line 36: Line 36:
0, \, \textrm{Otherwise}
0, \, \textrm{Otherwise}
\end{cases}</math></li>
\end{cases}</math></li>
</ol>
</ul>

Latest revision as of 20:20, 17 March 2024

The random variables [math]X,Y[/math] have the joint density function

[[math]] f_{X,Y}(x,y) = \begin{cases} c xy \, e^{-xy}, 1 \lt x \lt y \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]

for a constant [math]c[/math]. Determine the joint density function for the random variables [math]W = Y^{-1}, Z = X^{-1}.[/math]

  • [[math]] f_{W,Z}(w,z) = \begin{cases} c wz \, e^{-1/wz}, 0 \lt w \lt z \lt 1 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] f_{W,Z}(w,z) = \begin{cases} c wz \, e^{-w/z}, 0 \lt w \lt z \lt 1 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]]f_{W,Z}(w,z) = \begin{cases} c wz \, e^{-wz}, 1 \lt z \lt w \\ 0, \, \textrm{Otherwise} \end{cases}[[/math]]
  • [[math]]f_{W,Z}(w,z) = \begin{cases} c w^2z \, e^{-1/(wz)}, 0\lt z \lt w \lt 1 \\ 0, \, \textrm{Otherwise} \end{cases}[[/math]]
  • [[math]]f_{W,Z}(w,z) = \begin{cases} c wz^2 \, e^{-1/(wz)}, 0\lt z \lt w \lt 1 \\ 0, \, \textrm{Otherwise} \end{cases}[[/math]]