exercise:1acf805265: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Using the notation introduced in Example, show that in the example of Brams and Kilgour, if <math>x</math> is a positive power of 2, then <math display="block"> \frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ . </math>")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Using the notation introduced in [[guide:6727be23bd#exam 4.3.5 |Example]], show that in the example of Brams and Kilgour, if <math>x</math> is a positive power of 2, then
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div>  Using the notation introduced in [[guide:6727be23bd#exam 4.3.5 |Example]], show that in the
example of Brams and Kilgour, if <math>x</math> is a positive power of
2, then


<math display="block">
<math display="block">
\frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ .
\frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ .
</math>
</math>

Latest revision as of 23:53, 13 June 2024

Using the notation introduced in Example, show that in the example of Brams and Kilgour, if [math]x[/math] is a positive power of 2, then

[[math]] \frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ . [[/math]]