exercise:1acf805265: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Using the notation introduced in Example, show that in the example of Brams and Kilgour, if <math>x</math> is a positive power of 2, then <math display="block"> \frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ . </math>") |
No edit summary |
||
Line 1: | Line 1: | ||
Using the notation introduced in [[guide:6727be23bd#exam 4.3.5 |Example]], show that in the example of Brams and Kilgour, if <math>x</math> is a positive power of 2, then | |||
example of Brams and Kilgour, if <math>x</math> is a positive power of | |||
2, then | |||
<math display="block"> | <math display="block"> | ||
\frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ . | \frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ . | ||
</math> | </math> |
Latest revision as of 23:53, 13 June 2024
Using the notation introduced in Example, show that in the example of Brams and Kilgour, if [math]x[/math] is a positive power of 2, then
[[math]]
\frac{p_{x/2}}{p_{x/2} + p_x} = \frac 35\ .
[[/math]]