exercise:Af49baa475: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For a certain experiment, the Poisson distribution with parameter <math>\lambda = m</math> has been assigned. Show that a most probable outcome for the experiment is the integer value <math>k</math> such that <math>m - 1 \leq k \leq m</math>. Un...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
For a certain experiment, the Poisson distribution with parameter <math>\lambda = m</math> has been assigned.  Show that a most probable outcome for the experiment is the integer value <math>k</math> such that <math>m - 1 \leq k \leq m</math>.  Under what
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> For a certain experiment, the Poisson distribution with
parameter <math>\lambda = m</math> has been assigned.  Show that a most probable outcome for the
experiment is the integer value <math>k</math> such that <math>m - 1 \leq k \leq m</math>.  Under what
conditions will there be two most probable values?  '' Hint'': Consider the ratio
conditions will there be two most probable values?  '' Hint'': Consider the ratio
of successive probabilities.
of successive probabilities.

Latest revision as of 00:09, 14 June 2024

For a certain experiment, the Poisson distribution with parameter [math]\lambda = m[/math] has been assigned. Show that a most probable outcome for the experiment is the integer value [math]k[/math] such that [math]m - 1 \leq k \leq m[/math]. Under what conditions will there be two most probable values? Hint: Consider the ratio of successive probabilities.