exercise:9f18a63405: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Feller<ref group="Notes" >ibid., p. 161.</ref> discusses the statistics of flying bomb hits in an area in the south of London during the Second World War. The area in question was divided into <math>24 \times 24 = 576</math> small areas. The tot...") |
No edit summary |
||
Line 1: | Line 1: | ||
Feller<ref group="Notes" >ibid., p. 161.</ref> discusses the statistics of flying bomb hits in an area in the south of London during the | |||
statistics of flying bomb hits in an area in the south of London during the | |||
Second World War. The area in question was divided into | Second World War. The area in question was divided into | ||
<math>24 \times 24 = 576</math> small areas. The total number of hits was 537. There were 229 | <math>24 \times 24 = 576</math> small areas. The total number of hits was 537. There were 229 |
Latest revision as of 00:10, 14 June 2024
Feller[Notes 1] discusses the statistics of flying bomb hits in an area in the south of London during the Second World War. The area in question was divided into [math]24 \times 24 = 576[/math] small areas. The total number of hits was 537. There were 229 squares with 0 hits, 211 with 1 hit, 93 with 2 hits, 35 with 3 hits, 7 with 4 hits, and 1 with 5 or more. Assuming the hits were purely random, use the Poisson approximation to find the probability that a particular square would have exactly [math]k[/math] hits. Compute the expected number of squares that would have 0, 1, 2, 3, 4, and 5 or more hits and compare this with the observed results.
Notes