exercise:D77ca577c2: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In one of the first studies of the Poisson distribution, von Bortkiewicz<ref group="Notes" >L. von Bortkiewicz, ''Das Gesetz der Kleinen Zahlen'' (Leipzig: Teubner, 1898), p.\ 24.</ref> considered the frequency of deaths from kicks in the Prussi...") |
No edit summary |
||
Line 1: | Line 1: | ||
In one of the first studies of the Poisson distribution, von Bortkiewicz<ref group="Notes" >L. von Bortkiewicz, ''Das Gesetz der Kleinen | |||
Zahlen'' (Leipzig: Teubner, 1898), p. 24.</ref> considered the frequency of deaths from kicks in the Prussian army corps. From the study of 14 corps over a 20-year period, he obtained the data shown in [[guide:A618cf4c07#table 5.5 |Table]]. | |||
Bortkiewicz<ref group="Notes" >L. von Bortkiewicz, ''Das Gesetz der Kleinen | |||
Zahlen'' (Leipzig: Teubner, 1898), p. | |||
obtained the data shown in [[guide:A618cf4c07#table 5.5 |Table]]. | |||
<span id="table 5.5"/> | <span id="table 5.5"/> | ||
{|class="table" | {|class="table" | ||
Line 25: | Line 18: | ||
|4 || 2 | |4 || 2 | ||
|} | |} | ||
Fit a Poisson distribution to this data and see if you think that the | |||
Poisson distribution is appropriate. | Fit a Poisson distribution to this data and see if you think that the Poisson distribution is appropriate. | ||
'''Notes''' | '''Notes''' | ||
{{Reflist|group=Notes}} | {{Reflist|group=Notes}} |
Latest revision as of 00:13, 14 June 2024
In one of the first studies of the Poisson distribution, von Bortkiewicz[Notes 1] considered the frequency of deaths from kicks in the Prussian army corps. From the study of 14 corps over a 20-year period, he obtained the data shown in Table.
Number of deaths | Number of corps with [math]x[/math] deaths in a given year |
0 | 144 |
1 | 91 |
2 | 32 |
3 | 11 |
4 | 2 |
Fit a Poisson distribution to this data and see if you think that the Poisson distribution is appropriate.
Notes