exercise:D77ca577c2: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In one of the first studies of the Poisson distribution, von Bortkiewicz<ref group="Notes" >L. von Bortkiewicz, ''Das Gesetz der Kleinen Zahlen'' (Leipzig: Teubner, 1898), p.\ 24.</ref> considered the frequency of deaths from kicks in the Prussi...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
In one of the first studies of the Poisson distribution, von Bortkiewicz<ref group="Notes" >L. von Bortkiewicz,  ''Das Gesetz der Kleinen
\newcommand{\NA}{{\rm NA}}
Zahlen'' (Leipzig: Teubner, 1898), p. 24.</ref> considered the frequency of deaths from  kicks in the Prussian army corps.  From the study of 14 corps over a 20-year period, he obtained the data shown in [[guide:A618cf4c07#table 5.5 |Table]].
\newcommand{\mat}[1]{{\bf#1}}
 
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> In one of the first studies of the Poisson distribution, von
Bortkiewicz<ref group="Notes" >L. von Bortkiewicz,  ''Das Gesetz der Kleinen
Zahlen'' (Leipzig: Teubner, 1898), p.\ 24.</ref> considered the frequency of deaths from  kicks in the Prussian army corps.  From the study of 14 corps over a 20-year period, he
obtained the data shown in [[guide:A618cf4c07#table 5.5 |Table]].
<span id="table 5.5"/>
<span id="table 5.5"/>
{|class="table"
{|class="table"
Line 25: Line 18:
|4 || 2  
|4 || 2  
|}
|}
Fit a Poisson distribution to this data and see if you think that the
 
Poisson distribution is appropriate.
Fit a Poisson distribution to this data and see if you think that the Poisson distribution is appropriate.


'''Notes'''
'''Notes'''


{{Reflist|group=Notes}}
{{Reflist|group=Notes}}

Latest revision as of 00:13, 14 June 2024

In one of the first studies of the Poisson distribution, von Bortkiewicz[Notes 1] considered the frequency of deaths from kicks in the Prussian army corps. From the study of 14 corps over a 20-year period, he obtained the data shown in Table.

Mule kicks.
Number of deaths Number of corps with [math]x[/math] deaths in a given year
0 144
1 91
2 32
3 11
4 2

Fit a Poisson distribution to this data and see if you think that the Poisson distribution is appropriate.

Notes

  1. L. von Bortkiewicz, Das Gesetz der Kleinen Zahlen (Leipzig: Teubner, 1898), p. 24.