exercise:63ec956b0e: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with mean <math>\mu = 10</math> and variance <math>\sigma^2 = 100/3</math>. Using Chebyshev's Inequality, find an upper bound for the following probabilities. <ul><li> <math>P(|X - 10| \geq 2)</m...") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>X</math> be a continuous random variable with mean <math>\mu = | |||
10</math> and variance <math>\sigma^2 = 100/3</math>. Using Chebyshev's Inequality, find an upper | 10</math> and variance <math>\sigma^2 = 100/3</math>. Using Chebyshev's Inequality, find an upper | ||
bound for the following probabilities. | bound for the following probabilities. | ||
<ul><li> <math>P(|X - 10| \geq 2)</math>. | <ul style="list-style-type:lower-alpha"><li> <math>P(|X - 10| \geq 2)</math>. | ||
</li> | </li> | ||
<li> <math>P(|X - 10| \geq 5)</math>. | <li> <math>P(|X - 10| \geq 5)</math>. |
Latest revision as of 22:42, 14 June 2024
Let [math]X[/math] be a continuous random variable with mean [math]\mu = 10[/math] and variance [math]\sigma^2 = 100/3[/math]. Using Chebyshev's Inequality, find an upper bound for the following probabilities.
- [math]P(|X - 10| \geq 2)[/math].
- [math]P(|X - 10| \geq 5)[/math].
- [math]P(|X - 10| \geq 9)[/math].
- [math]P(|X - 10| \geq 20)[/math].