exercise:27d8a676f7: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1</math>, <math>X_2</math>, \ldots, <math>X_n</math> be an independent trials process, with values in <math>\{0,1\}</math> and mean <math>\mu = 1/3</math>. Find the ordinary and moment generating functions for the distribution of <u...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X_1</math>, <math>X_2</math>, ..., <math>X_n</math> be an independent trials  
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1</math>, <math>X_2</math>, \ldots, <math>X_n</math> be an independent trials  
process, with values in <math>\{0,1\}</math> and mean <math>\mu = 1/3</math>.  Find the ordinary and  
process, with values in <math>\{0,1\}</math> and mean <math>\mu = 1/3</math>.  Find the ordinary and  
moment generating functions for the distribution of
moment generating functions for the distribution of
<ul><li> <math>S_1 = X_1</math>. '' Hint'': First find <math>X_1</math> explicitly.
<ul style="list-style-type:lower-alpha"><li> <math>S_1 = X_1</math>. '' Hint'': First find <math>X_1</math> explicitly.
</li>
</li>
<li> <math>S_2 = X_1 + X_2</math>.
<li> <math>S_2 = X_1 + X_2</math>.

Latest revision as of 23:45, 14 June 2024

Let [math]X_1[/math], [math]X_2[/math], ..., [math]X_n[/math] be an independent trials process, with values in [math]\{0,1\}[/math] and mean [math]\mu = 1/3[/math]. Find the ordinary and moment generating functions for the distribution of

  • [math]S_1 = X_1[/math]. Hint: First find [math]X_1[/math] explicitly.
  • [math]S_2 = X_1 + X_2[/math].
  • [math]S_n = X_1 + X_2 +\cdots+ X_n[/math].