exercise:A9cd331806: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>N</math> be the expected total number of offspring in a branching process. Let <math>m</math> be the mean number of offspring of a single parent. Show that <math display="block"> N = 1 + \left(\sum p_k \cdot k\right) N = 1 + mN </math...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>N</math> be the expected total number of offspring in a branching process.  Let <math>m</math> be the mean number of offspring of a single parent.  Show that
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>N</math> be the expected total number of offspring in a branching
process.  Let <math>m</math> be the mean number of offspring of a single parent.  Show that


<math display="block">
<math display="block">

Latest revision as of 23:55, 14 June 2024

Let [math]N[/math] be the expected total number of offspring in a branching process. Let [math]m[/math] be the mean number of offspring of a single parent. Show that

[[math]] N = 1 + \left(\sum p_k \cdot k\right) N = 1 + mN [[/math]]

and hence that [math]N[/math] is finite if and only if [math]m \lt 1[/math] and in that case [math]N = 1/(1 - m)[/math].