exercise:74f3cedceb: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In Example, let <math>a = 0</math> and <math>b = 1/2</math>. Find <math> \mat {P},~ \mat {P}^2,</math> and <math> \mat {P}^3.</math> What would <math> \mat {P}^n</math> be? What happens to <math> \mat {P}^n</...") |
No edit summary |
||
Line 5: | Line 5: | ||
\newcommand{\secstoprocess}{\all} | \newcommand{\secstoprocess}{\all} | ||
\newcommand{\NA}{{\rm NA}} | \newcommand{\NA}{{\rm NA}} | ||
\newcommand{\mathds}{\mathbb}</math></div> In [[guide:52e01d4de7#exam 11.1.2 |Example]], let <math>a = 0</math> and <math>b = 1/2</math>. | \newcommand{\mathds}{\mathbb}</math></div> In [[guide:52e01d4de7#exam 11.1.2 |Example]], let <math>a = 0</math> and <math>b = 1/2</math>. Find <math> \mat {P},~ \mat {P}^2,</math> and <math> \mat {P}^3.</math> What would <math> \mat {P}^n</math> be? What happens to <math> \mat {P}^n</math> as <math>n</math> tends to infinity? Interpret this result. | ||
Find | |||
<math> \mat {P},~ \mat {P}^2,</math> and <math> \mat {P}^3.</math> What would <math> \mat {P}^n</math> be? | |||
What happens | |||
to <math> \mat {P}^n</math> as <math>n</math> tends to infinity? Interpret this result. |
Latest revision as of 21:33, 15 June 2024
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
In Example, let [math]a = 0[/math] and [math]b = 1/2[/math]. Find [math] \mat {P},~ \mat {P}^2,[/math] and [math] \mat {P}^3.[/math] What would [math] \mat {P}^n[/math] be? What happens to [math] \mat {P}^n[/math] as [math]n[/math] tends to infinity? Interpret this result.