exercise:D3d062a768: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For Example, verify that the following matrix is the inverse of <math>\mat{I} - \mat{Q}</math> and hence is the fundamental matrix <math>\mat{N}</math>. <math display="block"> \mat{N} = \pmatrix{ 8/3 & 1/6 & 4/...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> For [[guide:52e01d4de7#exam 11.1.9 |Example]], verify that the following  
\newcommand{\mathds}{\mathbb}</math></div> For [[guide:52e01d4de7#exam 11.1.9 |Example]], verify that the following matrix is the inverse of <math>\mat{I} - \mat{Q}</math> and hence is the fundamental matrix <math>\mat{N}</math>.
matrix is the inverse of <math>\mat{I} - \mat{Q}</math> and hence is the fundamental  
matrix <math>\mat{N}</math>.


<math display="block">
<math display="block">
Line 16: Line 14:
2/3 & 1/6 & 4/3 & 8/3 \cr}\ .
2/3 & 1/6 & 4/3 & 8/3 \cr}\ .
</math>
</math>
Find <math>\mat{N} \mat{c}</math> and <math>\mat{N} \mat{R}</math>.  Interpret the results.
Find <math>\mat{N} \mat{c}</math> and <math>\mat{N} \mat{R}</math>.  Interpret the results.

Latest revision as of 21:56, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

For Example, verify that the following matrix is the inverse of [math]\mat{I} - \mat{Q}[/math] and hence is the fundamental matrix [math]\mat{N}[/math].

[[math]] \mat{N} = \pmatrix{ 8/3 & 1/6 & 4/3 & 2/3 \cr 4/3 & 4/3 & 8/3 & 4/3 \cr 4/3 & 1/3 & 8/3 & 4/3 \cr 2/3 & 1/6 & 4/3 & 8/3 \cr}\ . [[/math]]

Find [math]\mat{N} \mat{c}[/math] and [math]\mat{N} \mat{R}[/math]. Interpret the results.