exercise:Ef04d1ba60: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Complete the following alternate proof of Theorem \ref{thm 11.2.3}. Let <math>s_i</math> be a transient state and <math>s_j</math> be an absorbing state. If we compute <math>b_{ij}</math> in terms of the possibilities on the outcome of the fi...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div>  Complete the following alternate proof of
\newcommand{\mathds}{\mathbb}</math></div>  Complete the following alternate proof of [[guide:87cf36f969#thm 11.2.3|Theorem]].  Let <math>s_i</math> be a transient state and <math>s_j</math> be an absorbing state.  If we compute <math>b_{ij}</math> in terms of the possibilities on the outcome of the first step, then we have the equation
Theorem \ref{thm  
11.2.3}.  Let <math>s_i</math> be a transient state and <math>s_j</math> be an absorbing state.  If
we  
compute <math>b_{ij}</math> in terms of the possibilities on the outcome of the first
step, then
we have the equation


<math display="block">
<math display="block">
b_{ij} = p_{ij} + \sum_k p_{ik} b_{kj}\ ,
b_{ij} = p_{ij} + \sum_k p_{ik} b_{kj}\ ,
</math>
</math>
where the summation is carried out over all transient states <math>s_k</math>.  Write this
 
in matrix form, and derive from this equation the statement
where the summation is carried out over all transient states <math>s_k</math>.  Write this in matrix form, and derive from this equation the statement


<math display="block">
<math display="block">
\mat{B} = \mat{N}\mat{R}\ .
\mat{B} = \mat{N}\mat{R}\ .
</math>
</math>

Latest revision as of 00:58, 16 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Complete the following alternate proof of Theorem. Let [math]s_i[/math] be a transient state and [math]s_j[/math] be an absorbing state. If we compute [math]b_{ij}[/math] in terms of the possibilities on the outcome of the first step, then we have the equation

[[math]] b_{ij} = p_{ij} + \sum_k p_{ik} b_{kj}\ , [[/math]]

where the summation is carried out over all transient states [math]s_k[/math]. Write this in matrix form, and derive from this equation the statement

[[math]] \mat{B} = \mat{N}\mat{R}\ . [[/math]]