exercise:0201e77b01: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In the queueing problem of Exercise Exercise, let <math>S</math> be the total service time required by a customer and <math>T</math> the time between arrivals of the customers. <ul><li> Show that <math>P(S = j) = (1 - r)...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> In the queueing problem of Exercise [[exercise:D094f2f7d6 |Exercise]],  
\newcommand{\mathds}{\mathbb}</math></div> In the queueing problem of [[exercise:D094f2f7d6 |Exercise]], let <math>S</math> be the total service time required by a customer and <math>T</math> the time between arrivals of the customers.
let <math>S</math> be the total service time required by a customer and <math>T</math> the time
<ul style="list-style-type:lower-alpha"><li> Show that <math>P(S = j) = (1 - r)^{j - 1}r</math> and <math>P(T = j) = (1 - p)^{j -
between  
arrivals of the customers.
<ul><li> Show that <math>P(S = j) = (1 - r)^{j - 1}r</math> and <math>P(T = j) = (1 - p)^{j -
1}p</math>, for <math>j  >  0</math>.
1}p</math>, for <math>j  >  0</math>.
</li>
</li>

Latest revision as of 22:01, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In the queueing problem of Exercise, let [math]S[/math] be the total service time required by a customer and [math]T[/math] the time between arrivals of the customers.

  • Show that [math]P(S = j) = (1 - r)^{j - 1}r[/math] and [math]P(T = j) = (1 - p)^{j - 1}p[/math], for [math]j \gt 0[/math].
  • Show that [math]E(S) = 1/r[/math] and [math]E(T) = 1/p[/math].
  • Interpret the conditions [math]s \lt 1[/math], [math]s = 1[/math] and [math]s \gt 1[/math] in terms of these expected values.