exercise:324e287551: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> In Exercise [[exercise:D563d7b058 |Exercise]], we assumed that every man has  a son.  Assume instead that the probability that a man has at least one son is .8.  Form a Markov chain with four states.  If a man has a son, the probability that this son is in a particular profession is the same as in [[exercise:D563d7b058 |Exercise]].  If there is no son, the process moves to state four which represents families whose male line has died out.  Find the matrix of transition probabilities and find the probability that a randomly chosen grandson of an unskilled laborer is a professional man.
\newcommand{\mathds}{\mathbb}</math></div> In [[exercise:D563d7b058 |Exercise]], we assumed that every man has  a son.  Assume instead that the probability that a man has at least one son is .8.  Form a Markov chain with four states.  If a man has a son, the probability that this son is in a particular profession is the same as in [[exercise:D563d7b058 |Exercise]].  If there is no son, the process moves to state four which represents families whose male line has died out.  Find the matrix of transition probabilities and find the probability that a randomly chosen grandson of an unskilled laborer is a professional man.

Latest revision as of 21:33, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In Exercise, we assumed that every man has a son. Assume instead that the probability that a man has at least one son is .8. Form a Markov chain with four states. If a man has a son, the probability that this son is in a particular profession is the same as in Exercise. If there is no son, the process moves to state four which represents families whose male line has died out. Find the matrix of transition probabilities and find the probability that a randomly chosen grandson of an unskilled laborer is a professional man.