exercise:Dc76246b0e: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 35: | Line 35: | ||
<math display="block"> | <math display="block"> | ||
f(x)= x^2 + x + 1, -\infty < x < \infty | |||
, | , | ||
</math> | </math> | ||
<math display="block"> | <math display="block"> | ||
g(x)= \frac{x + 1}{x - 1}, \mbox{for every real number $x$ except $x=1$}. | |||
. | |||
</math> | </math> | ||
Find: | Find: | ||
<ul style{{=}}"list-style-type:lower-alpha"><li><math>f(2)</math>, <math>f(0)</math>, <math>f(a)</math>, <math>f(a + b)</math>, <math>f(a - b)</math>.</li> | <ul style{{=}}"list-style-type:lower-alpha"><li><math>f(2)</math>, <math>f(0)</math>, <math>f(a)</math>, <math>f(a + b)</math>, <math>f(a - b)</math>.</li> | ||
<li><math>g(0)</math>, <math>g(-1)</math>, <math>g(10)</math>, <math>g(5 + t)</math>, <math>g(x^3)</math>.</li> | <li><math>g(0)</math>, <math>g(-1)</math>, <math>g(10)</math>, <math>g(5 + t)</math>, <math>g(x^3)</math>.</li> | ||
</ul> | </ul> |
Latest revision as of 22:44, 22 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]f[/math] and [math]g[/math] be two functions defined, respectively, by
[[math]]
f(x)= x^2 + x + 1, -\infty \lt x \lt \infty
,
[[/math]]
[[math]]
g(x)= \frac{x + 1}{x - 1}, \mbox{for every real number $x$ except $x=1$}.
[[/math]]
Find:
- [math]f(2)[/math], [math]f(0)[/math], [math]f(a)[/math], [math]f(a + b)[/math], [math]f(a - b)[/math].
- [math]g(0)[/math], [math]g(-1)[/math], [math]g(10)[/math], [math]g(5 + t)[/math], [math]g(x^3)[/math].