exercise:23efe261f4: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
There are many examples of a function <math>f</math> and a number <math>a</math> | |||
such that <math>f(a)</math> is defined (<math>a</math> is in the domain of <math>f</math>) but | There are many examples of a function <math>f</math> and a number <math>a</math> such that <math>f(a)</math> is defined (<math>a</math> is in the domain of <math>f</math>) but <math>f^\prime(a)</math> does not exist. Another way of saying the same thing is that the domain of <math>f^\prime</math> can be a ''ph proper'' subset of the domain of <math>f</math>. It is equally possible for <math>f^\prime (a)</math> to be defined and <math>f^{\prime\prime} (a)</math> not to be. Let <math>f</math> be the function defined by | ||
<math>f^\prime(a)</math> does not exist. Another way of saying the same thing | |||
is that the domain of <math>f^\prime</math> can be a ''ph proper'' subset | |||
of the domain of <math>f</math>. It is equally possible for <math>f^\prime (a)</math> to be | |||
defined and <math>f^{\prime\prime} (a)</math> not to be. Let <math>f</math> be the function | |||
defined by | |||
<math display="block"> | <math display="block"> | ||
f(x) = \ | f(x) = \begin{cases}\frac{x^2}2 \mbox{if $x\geq 0$,} \\ -\frac{x^2}2 \mbox{if $x\leq 0$.}\end{cases} | ||
</math> | </math> | ||
<ul style{{=}}"list-style-type:lower-alpha"><li>Compute <math>f^\prime</math>.</li> | <ul style{{=}}"list-style-type:lower-alpha"><li>Compute <math>f^\prime</math>.</li> | ||
<li>Is <math>f</math> a differentiable function?</li> | <li>Is <math>f</math> a differentiable function?</li> |
Latest revision as of 23:29, 22 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
There are many examples of a function [math]f[/math] and a number [math]a[/math] such that [math]f(a)[/math] is defined ([math]a[/math] is in the domain of [math]f[/math]) but [math]f^\prime(a)[/math] does not exist. Another way of saying the same thing is that the domain of [math]f^\prime[/math] can be a ph proper subset of the domain of [math]f[/math]. It is equally possible for [math]f^\prime (a)[/math] to be defined and [math]f^{\prime\prime} (a)[/math] not to be. Let [math]f[/math] be the function defined by
[[math]]
f(x) = \begin{cases}\frac{x^2}2 \mbox{if $x\geq 0$,} \\ -\frac{x^2}2 \mbox{if $x\leq 0$.}\end{cases}
[[/math]]
- Compute [math]f^\prime[/math].
- Is [math]f[/math] a differentiable function?
- Show that [math]f^{\prime\prime}(0)[/math] does not exist, and compute [math]f^{\prime\prime}(x)[/math] for [math]x\ne 0[/math].