exercise:018613c876: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 36: | Line 36: | ||
is an equation of an ellipse. | is an equation of an ellipse. | ||
Consider a point <math>(x_1,y_1)</math> on this ellipse. | Consider a point <math>(x_1,y_1)</math> on this ellipse. | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Find the slope of the tangent to the graph at <math>(x_1,y_1)</math>.</li> | Find the slope of the tangent to the graph at <math>(x_1,y_1)</math>.</li> | ||
<li>Write an equation of the tangent line in | <li>Write an equation of the tangent line in (a).</li> | ||
<li>Show that <math>axx_1 + byy_1 + \frac12c(x+x_1) + | <li>Show that <math>axx_1 + byy_1 + \frac12c(x+x_1) + | ||
\frac12d(y+y_1) + e = 0</math> is an equation of the tangent line.</li> | \frac12d(y+y_1) + e = 0</math> is an equation of the tangent line.</li> | ||
</ul> | </ul> |
Latest revision as of 00:50, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Assume that the constants [math]a[/math], [math]b[/math], [math]c[/math], [math]d[/math], and [math]e[/math] are such that [math]ax^2 + by^2 + cx + dy + e = 0[/math] is an equation of an ellipse. Consider a point [math](x_1,y_1)[/math] on this ellipse.
- Find the slope of the tangent to the graph at [math](x_1,y_1)[/math].
- Write an equation of the tangent line in (a).
- Show that [math]axx_1 + byy_1 + \frac12c(x+x_1) + \frac12d(y+y_1) + e = 0[/math] is an equation of the tangent line.