exercise:018613c876: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 36: Line 36:
is an equation of an ellipse.
is an equation of an ellipse.
Consider a point <math>(x_1,y_1)</math> on this ellipse.
Consider a point <math>(x_1,y_1)</math> on this ellipse.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{3.3.10a}
<li>
Find the slope of the tangent to the graph at <math>(x_1,y_1)</math>.</li>
Find the slope of the tangent to the graph at <math>(x_1,y_1)</math>.</li>
<li>Write an equation of the tangent line in \ref{ex3.3.10a}.</li>
<li>Write an equation of the tangent line in (a).</li>
<li>Show that <math>axx_1 + byy_1 + \frac12c(x+x_1) +
<li>Show that <math>axx_1 + byy_1 + \frac12c(x+x_1) +
\frac12d(y+y_1) + e = 0</math> is an equation of the tangent line.</li>
\frac12d(y+y_1) + e = 0</math> is an equation of the tangent line.</li>
</ul>
</ul>

Latest revision as of 00:50, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Assume that the constants [math]a[/math], [math]b[/math], [math]c[/math], [math]d[/math], and [math]e[/math] are such that [math]ax^2 + by^2 + cx + dy + e = 0[/math] is an equation of an ellipse. Consider a point [math](x_1,y_1)[/math] on this ellipse.

  • Find the slope of the tangent to the graph at [math](x_1,y_1)[/math].
  • Write an equation of the tangent line in (a).
  • Show that [math]axx_1 + byy_1 + \frac12c(x+x_1) + \frac12d(y+y_1) + e = 0[/math] is an equation of the tangent line.