guide:6d9eb91468: Difference between revisions

From Stochiki
No edit summary
mNo edit summary
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
===Absolute and Conditional Convergence.===
 
An infinite series <math>\sum_{i=m}^{\infty} a_i</math> is said to be \textbf{absolutely convergent} if the corresponding series of absolute values <math>\sum_{i=m}^{\infty} |a_i|</math> is convergent. If a series <math>\sum_{i=m}^{\infty} a_i</math> converges, but <math>\sum_{i=m}^{\infty} |a_i|</math> does not, then we say that <math>\sum_{i=m}^{\infty} a_i</math> is '''conditionally convergent.''' An example of a conditionally convergent series is the alternating harmonic series: We have shown that
An infinite series <math>\sum_{i=m}^{\infty} a_i</math> is said to be '''absolutely convergent''' if the corresponding series of absolute values <math>\sum_{i=m}^{\infty} |a_i|</math> is convergent. If a series <math>\sum_{i=m}^{\infty} a_i</math> converges, but <math>\sum_{i=m}^{\infty} |a_i|</math> does not, then we say that <math>\sum_{i=m}^{\infty} a_i</math> is '''conditionally convergent.''' An example of a conditionally convergent series is the alternating harmonic series: We have shown that


<math display="block">
<math display="block">
Line 75: Line 75:
\end{picture}
\end{picture}
\end{centering}
\end{centering}
\medskip
 
'''Example'''  
'''Example'''  
Classify each of the following infinite series as absolutely convergent, conditionally convergent, or divergent.
Classify each of the following infinite series as absolutely convergent, conditionally convergent, or divergent.


Line 86: Line 87:
If we let <math>a_k = (-1)^k \frac{1}{\sqrt {k+1}}</math>, the alternating series in (a) will converge if:
If we let <math>a_k = (-1)^k \frac{1}{\sqrt {k+1}}</math>, the alternating series in (a) will converge if:


<ul style="list-style-type:lower-roman">
<li><math>|a_{k+1}| \leq |a_k|, \mathrm{for every integer} k \geq 1, \;\mathrm{and}</math></li>
<li><math>\lim_{k \rightarrow \infty} |a_k| = 0.</math></li>
</ul>


\item[i]] <math>|a_{k+1}| \leq |a_k|, \mathrm{for every integer} k \geq 1, \;\mathrm{and}</math>
[See Theorem (4.1), page 498.] We have
\item[(ii)] <math>\lim_{k \rightarrow \infty} |a_k| = 0.</math>
 
[See Theorem (4.1), page 498.] We have


<math display="block">
<math display="block">
Line 106: Line 108:
</math>
</math>
and it follows that the series <math>\sum_{k=1}^\infty a_k</math> converges. However, it is easy to show that <math>\sum_{k=1}^\infty |a_k|</math> diverges by either the Comparison Test or the Integral Test. Using the latter, we consider the function <math>f</math> defined by <math>f(x) = \frac{1}{\sqrt{x+1}}</math>, which is nonnegative and decreasing on the interval <math>[1, \infty)</math>. We have <math>f(k) = \frac{1}{\sqrt{k+1}} = |a_k|</math> and
and it follows that the series <math>\sum_{k=1}^\infty a_k</math> converges. However, it is easy to show that <math>\sum_{k=1}^\infty |a_k|</math> diverges by either the Comparison Test or the Integral Test. Using the latter, we consider the function <math>f</math> defined by <math>f(x) = \frac{1}{\sqrt{x+1}}</math>, which is nonnegative and decreasing on the interval <math>[1, \infty)</math>. We have <math>f(k) = \frac{1}{\sqrt{k+1}} = |a_k|</math> and


<math display="block">
<math display="block">
Line 114: Line 115:
\end{eqnarray*}
\end{eqnarray*}
</math>
</math>


The divergence of the integral implies the divergence of the corresponding series <math>\sum_{k=1}^\infty |a_k|</math>, and we conclude that the series (a) is conditionally convergent.
The divergence of the integral implies the divergence of the corresponding series <math>\sum_{k=1}^\infty |a_k|</math>, and we conclude that the series (a) is conditionally convergent.
Line 136: Line 136:
lt follows that <math>\sum_{k=1}^\infty \frac{1}{|2k^2 - 15|}</math> converges, and therefore that the series (b) is absolutely convergent.
lt follows that <math>\sum_{k=1}^\infty \frac{1}{|2k^2 - 15|}</math> converges, and therefore that the series (b) is absolutely convergent.


{{proofcard|Theorem|theorem-2|RATIO TEST. Let <math>\sum_{i=m}^\infty a_i</math> be an infinite series for which \linebreak
{{proofcard|RATIO TEST|theorem-2|Let <math>\sum_{i=m}^\infty a_i</math> be an infinite series for which <math>\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q</math> (or <math>\infty</math>).  
<math>\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q</math> (or <math>\infty</math>).  


\item[(i)] If <math>q  <  1</math>, then the series is absolutely convergent.
<ul style{{=}}"list-style-type:lower-roman">
\item[(ii)] If <math>q  >  1</math> (including <math>q = \infty</math> ), then the series is divergent.
<li>If <math>q  <  1</math>, then the series is absolutely convergent.</li>
\item[(iii)] If <math>q = 1</math>, then the series may either converge or diverge; i.e., the test fails.
<li>If <math>q  >  1</math> (including <math>q = \infty</math> ), then the series is divergent.</li>
<li>If <math>q = 1</math>, then the series may either converge or diverge; i.e., the test fails.</li>
</ul>


|Suppose, first of all, that <math>\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q  <  1</math>. This implies that the ratio <math>\frac{|a_{n+1}|}{|a_n|}</math> is arbitrarily close to <math>q</math> if <math>n</math> is sufficiently large. Hence if we pick an arbitrary number <math>r</math> such that <math>q  <  r  <  1</math>, then there exists an integer <math>N \geq m</math> such that
|Suppose, first of all, that <math>\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q  <  1</math>. This implies that the ratio <math>\frac{|a_{n+1}|}{|a_n|}</math> is arbitrarily close to <math>q</math> if <math>n</math> is sufficiently large. Hence if we pick an arbitrary number <math>r</math> such that <math>q  <  r  <  1</math>, then there exists an integer <math>N \geq m</math> such that
Line 224: Line 225:
\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} |a_{N+i} | = \infty .
\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} |a_{N+i} | = \infty .
</math>
</math>
However, if the series <math>\sum_{i=m}^\infty a_i</math> converges, then it necessarily follows that <math>\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} a_n = 0</math>. [See Theorem (2.1), page 483, and Problem 2, page 502.] Hence <math>\sum_{i=m}^\infty a_i</math> diverges, and part (ii) is proved.
However, if the series <math>\sum_{i=m}^\infty a_i</math> converges, then it necessarily follows that <math>\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} a_n = 0</math>. [See Theorem (2.1), page 483, and Problem 2, page 502.] Hence <math>\sum_{i=m}^\infty a_i</math> diverges, and part (ii) is proved.
Part (iii) is proved by giving an example of an absolutely convergent series and one of a divergent series such that <math>q = 1</math> for each of them. Consider the convergent <math>p</math>-series <math>\sum_{i=1}^\infty \frac{1}{i^2}</math>, which, being nonnegative, is also absolutely convergent. Setting <math>a_n = \frac{1}{n^2}</math>, we obtain
Part (iii) is proved by giving an example of an absolutely convergent series and one of a divergent series such that <math>q = 1</math> for each of them. Consider the convergent <math>p</math>-series <math>\sum_{i=1}^\infty \frac{1}{i^2}</math>, which, being nonnegative, is also absolutely convergent. Setting <math>a_n = \frac{1}{n^2}</math>, we obtain
Line 252: Line 254:
</math>
</math>
The Ratio Test is therefore inconclusive if`<math>q = 1</math>, and this completes the proof.}}
The Ratio Test is therefore inconclusive if`<math>q = 1</math>, and this completes the proof.}}
If <math>n</math> is an arbitrary positive integer, the product <math>n(n - 1) \cdots 3 \cdot  2 \cdot 1</math> is called '''$n$ factorial''' and is denoted by <math>n!</math> Thus <math>3! = 3 \cdot 2 \cdot 1 = 6</math> and <math>5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120</math>. Although it may seem strange, <math>0!</math> is also defined and has the value 1. A convenient recursive definition of the factorial is given by the formulas
If <math>n</math> is an arbitrary positive integer, the product <math>n(n - 1) \cdots 3 \cdot  2 \cdot 1</math> is called '''<math>n</math> factorial''' and is denoted by <math>n!</math> Thus <math>3! = 3 \cdot 2 \cdot 1 = 6</math> and <math>5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120</math>. Although it may seem strange, <math>0!</math> is also defined and has the value 1. A convenient recursive definition of the factorial is given by the formulas


<math display="block">
<math display="block">
Line 289: Line 291:


'''Example'''  
'''Example'''  
Show that the infinite series  
Show that the infinite series  


Line 294: Line 297:
\sum_{i=1}^{\infty} ir^{i-1}  = 1 + 2r + 3r^2 + 4r^3 + \cdots
\sum_{i=1}^{\infty} ir^{i-1}  = 1 + 2r + 3r^2 + 4r^3 + \cdots
</math>
</math>
converges absolutely if <math>|r|  <  1</math> and diverges if <math>|r| \geq 1</math>. This series is related to the geometric series <math>\sum_{i=0}^{\infty} r^i = 1 + r + r^2 + \cdots </math>, and in a later section we shall make use of the relationship. To settle the immediate question of convergence, however, we set <math>a_i = ir^{i-1}</math> for every positive integer <math>i</math>, and write the series as <math>\sum_{i=1}^{\infty} a_i</math>. Observe, first of all, that if <math>|r| \geq 1</math>, then <math>|a_n| = n|r|^{n-1}</math> and
converges absolutely if <math>|r|  <  1</math> and diverges if <math>|r| \geq 1</math>. This series is related to the geometric series <math>\sum_{i=0}^{\infty} r^i = 1 + r + r^2 + \cdots </math>, and in a later section we shall make use of the relationship. To settle the immediate question of convergence, however, we set <math>a_i = ir^{i-1}</math> for every positive integer <math>i</math>, and write the series as <math>\sum_{i=1}^{\infty} a_i</math>. Observe, first of all, that if <math>|r| \geq 1</math>, then <math>|a_n| = n|r|^{n-1}</math> and


<math display="block">
<math display="block">
Line 360: Line 363:
(9) were false, it would mean that <math>\lim_{n \rightarrow \infty} s_n</math> lay outside this interval, a positive distance away from it. But this cannot happen, since Sn is arbitrarily close to <math>\lim_{n \rightarrow \infty} s_n</math> for <math>n</math> sufficiently large.] Combining (7) and (9), we obtain the in-equality which was to be proved.}}
(9) were false, it would mean that <math>\lim_{n \rightarrow \infty} s_n</math> lay outside this interval, a positive distance away from it. But this cannot happen, since Sn is arbitrarily close to <math>\lim_{n \rightarrow \infty} s_n</math> for <math>n</math> sufficiently large.] Combining (7) and (9), we obtain the in-equality which was to be proved.}}


\end{exercise}
==General references==
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Revision as of 21:00, 20 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

An infinite series [math]\sum_{i=m}^{\infty} a_i[/math] is said to be absolutely convergent if the corresponding series of absolute values [math]\sum_{i=m}^{\infty} |a_i|[/math] is convergent. If a series [math]\sum_{i=m}^{\infty} a_i[/math] converges, but [math]\sum_{i=m}^{\infty} |a_i|[/math] does not, then we say that [math]\sum_{i=m}^{\infty} a_i[/math] is conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series: We have shown that

[[math]] \sum_{i=1}^{\infty} a_i = \sum_{i=1}^{\infty} (- 1)^{i+1} \frac{1}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots [[/math]]

converges, but that

[[math]] \sum_{i=1}^{\infty} |a_i| = \sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots [[/math]]

diverges. There are many examples of series for which both [math]\sum_{i=m}^{\infty} a_i[/math] and [math]\sum_{i=m}^{\infty} |a_i|[/math] converge, and also many where both diverge. (In particular, for nonnegative series, the two are the same.) There is the remaining possibility that [math]\sum_{i=m}^{\infty} |a_i|[/math] might converge, and [math]\sum_{i=m}^{\infty} |a_i|[/math] diverge. However, the following theorem shows that this cannot happen.

Theorem

If the infinite series [math]\sum_{i=m}^{\infty} a_i[/math] is absolutely convergent, then it is convergent.


Show Proof

Since [math]|a_i| \geq -a_i[/math], we have [math]a_i + |a_i| \geq 0[/math], for every integer [math]i \geq m[/math]. Hence the series [math]\sum_{i=m}^{\infty} (a_i + |a_i|)[/math] is nonnegative. Since [math]a_i \leq |a_i|[/math], we also have

[[math]] \begin{equation} a_i + |a_i| \leq |a_i| + |a_i| = 2|a_i|, \label{eq9.5.1} \end{equation} [[/math]]
for every integer [math]i \geq m[/math]. The assumption that [math]\sum_{i=m}^{\infty} a_i[/math] is absolutely convergent means that the series [math]\sum_{i=m}^{\infty} |a_i|[/math] converges, and, hence, so does the series [math]\sum_{i=m}^{\infty} 2|a_i|[/math]. It therefore follows from (1) by the Comparison Test that the nonnegative series [math]\sum_{i=m}^{\infty} (a_i + |a_i|)[/math] is convergent. We conclude from Theorem (2.2), page 485, that

[[math]] \sum_{i=m}^{\infty} a_i = \sum_{i=m}^{\infty} (a_i + |a_i |) - \sum_{i=m}^{\infty} |a_i| [[/math]]
and that [math]\sum_{i=m}^{\infty} a_i[/math] converges. This completes the proof.

Thus the only possibilities for a given series are those illustrated. by the following scheme:

\begin{centering} \begin{picture}(160,80)(0,0) \put(0,30){\line(3,1){30}} \put(0,30){\line(3,-1){30}} \put(40,40){convergent} \put(40,15){divergent} \put(100,50){\line(3,1){30}} \put(100,50){\line(3,-1){30}} \put(140,35){conditionally convergent} \put(140,60){absolutely convergent} \end{picture} \end{centering}

Example

Classify each of the following infinite series as absolutely convergent, conditionally convergent, or divergent.

[[math]] \mbox{(a)}\;\;\; \sum_{k=1}^\infty (-1)^k \frac{1}{\sqrt {k+1}} , \;\;\; \mbox{(b)}\;\;\; \sum_{k=1}^\infty (-1)^k \frac{1}{2k^2 - 15} . [[/math]]

If we let [math]a_k = (-1)^k \frac{1}{\sqrt {k+1}}[/math], the alternating series in (a) will converge if:

  • [math]|a_{k+1}| \leq |a_k|, \mathrm{for every integer} k \geq 1, \;\mathrm{and}[/math]
  • [math]\lim_{k \rightarrow \infty} |a_k| = 0.[/math]

[See Theorem (4.1), page 498.] We have

[[math]] |a_k| = \frac{1}{\sqrt{k + 1}}\;\;\; \mbox{and}\;\;\; |a_{k+1}| = \frac{1}{\sqrt{k + 2}} . [[/math]]

Hence condition (i) becomes

[[math]] \frac{1}{\sqrt{k + 2}} \leq \frac{1}{\sqrt{k + 1}}, \;\;\;\mbox{for every integer}\; k \geq 1, [[/math]]

which is certainly true. Condition (ii) is also satisfied, since

[[math]] \lim_{k \rightarrow \infty} \frac{1}{\sqrt{k + 1}} = 0, [[/math]]

and it follows that the series [math]\sum_{k=1}^\infty a_k[/math] converges. However, it is easy to show that [math]\sum_{k=1}^\infty |a_k|[/math] diverges by either the Comparison Test or the Integral Test. Using the latter, we consider the function [math]f[/math] defined by [math]f(x) = \frac{1}{\sqrt{x+1}}[/math], which is nonnegative and decreasing on the interval [math][1, \infty)[/math]. We have [math]f(k) = \frac{1}{\sqrt{k+1}} = |a_k|[/math] and

[[math]] \begin{eqnarray*} \int_1^\infty f(x) dx &=& \int_1^\infty \frac{1}{\sqrt{x + 1}} dx = \lim_{b \rightarrow \infty} [2 \sqrt{x + 1}|_1^b ] \\ &=& \lim_{b \rightarrow \infty} [2\sqrt{b + 1} - 2 \sqrt2] = \infty . \end{eqnarray*} [[/math]]

The divergence of the integral implies the divergence of the corresponding series [math]\sum_{k=1}^\infty |a_k|[/math], and we conclude that the series (a) is conditionally convergent. For the series in (b), we might apply the same technique: Test first for convergence and then for absolute convergence. However, if we suspect that the series is absolutely convergent, we may save a step by first testing for absolute convergence. In this particular case, the corresponding series of absolute values is [math] \sum_{k = 1}^\infty \frac{1}{|2k^2 - 15|}[/math]. The latter can be shown to be convergent by the CoMparison Test. For a test series we choose the convergent series [math]\sum_{k=1}^\infty \frac{2}{k^2}[/math]. The condition of the test is that the inequality

[[math]] \frac{1}{|2k^2 - 15|} \leq \frac{2}{k^2} [[/math]]

must be true eventually. We shall consider only integers [math]k \geq 3[/math], since, for these values, [math]2k^2 \geq18[/math] and hence [math]|2k^2 - 15| = 2k^2 - 15[/math]. For those integers for which [math]k \geq 3[/math], the inequality

[[math]] \frac{1}{2k^2 - 15} \leq \frac{2}{k^2} [[/math]]

is equivalent to [math]k^2 \leq 4k^2 - 30[/math], which in turn is equivalent to [math]k^2 \geq 10[/math]. The last is true for every integer [math]k \geq 4[/math]. Hence

[[math]] \frac{1}{|2k^2 - 15|} \leq \frac{2}{k^2}, \;\;\;\mbox{for every integer}\; k \geq 4. [[/math]]

lt follows that [math]\sum_{k=1}^\infty \frac{1}{|2k^2 - 15|}[/math] converges, and therefore that the series (b) is absolutely convergent.

RATIO TEST

Let [math]\sum_{i=m}^\infty a_i[/math] be an infinite series for which [math]\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q[/math] (or [math]\infty[/math]).

  • If [math]q \lt 1[/math], then the series is absolutely convergent.
  • If [math]q \gt 1[/math] (including [math]q = \infty[/math] ), then the series is divergent.
  • If [math]q = 1[/math], then the series may either converge or diverge; i.e., the test fails.


Show Proof

Suppose, first of all, that [math]\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q \lt 1[/math]. This implies that the ratio [math]\frac{|a_{n+1}|}{|a_n|}[/math] is arbitrarily close to [math]q[/math] if [math]n[/math] is sufficiently large. Hence if we pick an arbitrary number [math]r[/math] such that [math]q \lt r \lt 1[/math], then there exists an integer [math]N \geq m[/math] such that

[[math]] \begin{equation} \frac{|a_{n+1}|}{|a_n|} \leq r, \;\;\;\mbox{for every integer}\; n \geq N. \label{eq9.5.2} \end{equation} [[/math]]
We shall show by mathematical induction that (2) implies that

[[math]] \begin{equation} |a_{N+i}| \leq r^{i}|a_N|, \;\;\;\mbox{for every integer}\; i \geq 0. \label{eq9.5.3} \end{equation} [[/math]]
If [math]i = 0[/math], then the inequality in (3) becomes [math]|a_{N+0}| \leq r^{0}|a_N|[/math], which is true. In the second part of an inductive proof we need to show that, if the inequality (3) is true for [math]i = k[/math], then it is also true for [math]i = k + 1[/math]. The assumption. then, is that

[[math]] \begin{equation} |a_{N+1}| \leq r^k |a_N|, \label{eq9.5.4} \end{equation} [[/math]]
and we want to prove that

[[math]] |a_{N+k+1}| \leq r^{k+1} |a_N| . [[/math]]
If we multiply both sides of inequality (4) by the positive number [math]r[/math], we get

[[math]] \begin{equation} r |a_{N+k}| \leq r^{k+1} |a_N| . \label{eq9.5.5} \end{equation} [[/math]]
But, inequality (2) tells us that

[[math]] \frac{|a_{N+k+1}|}{|a_{N+k}|} \leq r, [[/math]]
and hence that

[[math]] \begin{equation} |a_{N+k+1}| \leq r|a_{N+k}| \label{eq9.5.6} \end{equation} [[/math]]
Combining inequalities (5) and (6) we have

[[math]] |a_{N+k+1}| \leq r^{k+1} |a_{N}|, [[/math]]
completing the inductive proof. Since [math]|r| \lt 1[/math], the geometric series [math]\sum_{i=0}^\infty |a_N| r^i[/math] converges, and it follows from (3) by the Comparison Test that the series [math]\sum_{i=0}^\infty |a_{N+i}|[/math] converges. However,

[[math]] \sum_{i=0}^\infty |a_{N+i}| = \sum_{i=N}^\infty |a_i| , [[/math]]
and the convergence of [math]\sum_{i=N}^{\infty} |a_i|[/math] implies the convergence of [math]\sum_{i=m}^\infty |a_i|[/math]. Hence the series [math]\sum_{i=m}^\infty a_i[/math] converges absolutely, and the proof of part (i) of the theorem is complete. We next assume that [math]\lim_{n \rightarrow \infty} |\frac{a_{n+1}}{a_n} |= q \gt 1[/math], and let [math]r[/math] be an arbitrary number such that [math]1 \lt r \lt q[/math]. Then there exists an integer [math]N \geq m[/math] such that

[[math]] \frac{|a_{n+1}|}{|a_n|} \geq r, \;\;\;\mbox{for every integer}\; n \geq N. [[/math]]
In the same way in which we proved that (2) implies (3), it follows by induction from the preceding inequality that

[[math]] |a_{N+i}| \geq r^i |a_N|, \;\;\;\mbox{for every integer}\; i \geq 0. [[/math]]
Since [math]r \gt 1[/math], we know that [math]\lim_{i \rightarrow \infty} r^i = \infty[/math] (see Problem 5, page 481), and therefore also that

[[math]] \lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} |a_{N+i} | = \infty . [[/math]]

However, if the series [math]\sum_{i=m}^\infty a_i[/math] converges, then it necessarily follows that [math]\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} a_n = 0[/math]. [See Theorem (2.1), page 483, and Problem 2, page 502.] Hence [math]\sum_{i=m}^\infty a_i[/math] diverges, and part (ii) is proved. Part (iii) is proved by giving an example of an absolutely convergent series and one of a divergent series such that [math]q = 1[/math] for each of them. Consider the convergent [math]p[/math]-series [math]\sum_{i=1}^\infty \frac{1}{i^2}[/math], which, being nonnegative, is also absolutely convergent. Setting [math]a_n = \frac{1}{n^2}[/math], we obtain

[[math]] a_{n+1} = \frac{1}{(n+ 1)^2} = \frac{1}{n^2 + 2n + 1} [[/math]]
and

[[math]] \frac{|a_{n+1}|}{|a_n|} = \frac{a_{n+1}}{a_n} = \frac{n^2}{n^2 + 2n + 1} = \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}} . [[/math]]
Hence

[[math]] \lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}} = 1. [[/math]]

For the second example, we take the divergent harmonic series [math]\sum_{i=1}^\infty \frac{1}{i}[/math]. If we let [math]a_n = \frac{1}{n}[/math], then [math]a_{n+1} = \frac{1}{n + 1}[/math] and

[[math]] \frac{|a_{n+1}|}{|a_n|} = \frac{a_{n+1}}{a_n} = \frac{n}{n + 1} = \frac{1}{1 + \frac{1}{n}} . [[/math]]
For this series we also get

[[math]] \lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} \frac{1}{1 + \frac{1}{n}} = 1. [[/math]]
The Ratio Test is therefore inconclusive if`[math]q = 1[/math], and this completes the proof.

If [math]n[/math] is an arbitrary positive integer, the product [math]n(n - 1) \cdots 3 \cdot 2 \cdot 1[/math] is called [math]n[/math] factorial and is denoted by [math]n![/math] Thus [math]3! = 3 \cdot 2 \cdot 1 = 6[/math] and [math]5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120[/math]. Although it may seem strange, [math]0![/math] is also defined and has the value 1. A convenient recursive definition of the factorial is given by the formulas

[[math]] \begin{eqnarray*} 0! &=& 1,\\ (n + 1)! &=& (n + 1)n!, \;\;\;\mbox{for every integer}\; n \geq 0. \end{eqnarray*} [[/math]]


Example

Prove that the following series converges:

[[math]] \sum_{n=0}^\infty \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots . [[/math]]

We write the series as [math]\sum_{i=0}^{\infty} a_n [/math] by defining [math]a_n = \frac{1}{n!}[/math] for every integer [math]n \geq 0[/math]. Then

[[math]] \begin{eqnarray*} \frac{|a_{n+1}|}{|a_n|} &=& \frac{\frac{1}{(n+1)!} }{\frac{1}{n!}} = \frac{n!}{(n+1)!}\\ &=&\frac{n!}{(n+1)n!} = \frac{1}{n+1} . \end{eqnarray*} [[/math]]


Hence

[[math]] q = \lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} \frac{1}{n + 1} = 0. [[/math]]

Since [math]q \lt 1[/math], it follows from the Ratio Test that the series is absolutely convergent. But absolute convergence implies convergence [Theorem (5.1)], and we conclude that the series [math]\sum_{n=0}^{\infty} \frac{1}{n!}[/math] converges.

Example

Show that the infinite series

[[math]] \sum_{i=1}^{\infty} ir^{i-1} = 1 + 2r + 3r^2 + 4r^3 + \cdots [[/math]]

converges absolutely if [math]|r| \lt 1[/math] and diverges if [math]|r| \geq 1[/math]. This series is related to the geometric series [math]\sum_{i=0}^{\infty} r^i = 1 + r + r^2 + \cdots [/math], and in a later section we shall make use of the relationship. To settle the immediate question of convergence, however, we set [math]a_i = ir^{i-1}[/math] for every positive integer [math]i[/math], and write the series as [math]\sum_{i=1}^{\infty} a_i[/math]. Observe, first of all, that if [math]|r| \geq 1[/math], then [math]|a_n| = n|r|^{n-1}[/math] and

[[math]] \lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} n|r|^{n-1} = \infty . [[/math]]

Hence, if [math]|r| \geq 1[/math], the series must diverge, since convergence would imply [math]\lim_{n \rightarrow \infty} |a_n| = 0[/math]. This proves the second part of what is asked, and we now assume that [math]|r| \lt 1[/math]. lf [math]r = 0[/math], the series is absolutely convergent with value 1, so we further assume that [math]r \neq 0[/math]. Then

[[math]] \frac{|a_{n+1}|}{|a_n|} = \frac{(n+1) |r|^n}{n |r|^{n-1}} = \frac{n+1}{n} |r| = (1 + \frac{1}{n}) |r|, [[/math]]

and so

[[math]] \lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} (1 + \frac{1}{n}) |r| = |r|. [[/math]]

Thus [math]q = |r| \lt 1[/math], and the Ratio Test therefore implies that the series is absolutely convergent.

The next theorem, with which we conclude the section, establishes a ttseful inequality.

Theorem

If the series [math]\sum_{i=m}^{\infty} a_i[/math] converges, then [math]|\sum_{i=m}^{\infty} a_i| \leq \sum_{i=m}^{\infty} |a_i|[/math]. The result is true even if [math]\sum_{i=m}^{\infty} a_i[/math] is not absolutely convergent, for in that case [math]\sum_{i=m}^{\infty} |a_i| = \infty[/math], and the inequality becomes [math]\sum_{i=m}^{\infty} |a_i| \leq \infty[/math].


Show Proof

In view of the preceding remark, we shall assume throughout the proof that [math]\sum_{i=m}^{\infty} |a_i|[/math] converges. Let [math]\{s_n\}[/math] be the sequence of partial sums corresponding to the series [math]\sum_{i=m}^{\infty} a_i[/math]. Then

[[math]] s_n = \sum_{i=m}^{\infty} a_i, \;\;\;\mbox{for every integer}\; n \geq m, [[/math]]
and the assumption that [math]\sum_{i=m}^{\infty} a_i[/math] converges means that the sequence [math]\{ s_n \}[/math] converges and that

[[math]] \begin{equation} \lim_{n \rightarrow \infty} s_n = \sum_{i=m}^{\infty} a_i . \label{eq9.5.7} \end{equation} [[/math]]
The general fact that [math]|a + b| \leq |a| + |b|[/math], for any two real numbers [math]a[/math] and [math]b[/math], can be extended to any finite number of summands, and we therefore have

[[math]] |s_n| = |\sum_{i=m}^{n} a_i| \leq \sum_{i=m}^{n} |a_i| . [[/math]]
Furthermore,

[[math]] \sum_{i=m}^{n} |a_i| \leq \sum_{i=m}^{\infty} |a_i| [[/math]]
[see (3.2), page 490, and (1.3)1 page 478). Hence

[[math]] \begin{equation} |s_n| \leq \sum_{i=m}^{\infty} |a_i|, \;\;\;\mbox{for every integer}\; n \geq m. \label{eq9.5.8} \end{equation} [[/math]]
It follows from (8) that

[[math]] \begin{equation} |\lim_{n \rightarrow \infty} s_n | \leq \sum_{i=m}^{\infty} |a_i| . \label{eq9.5.9} \end{equation} [[/math]]
[It is easy to see that (8) implies (9) if we regard the numbers [math]s_n[/math] and [math]\sum_{i=m}^{\infty} |a_i|[/math] as points on the line. The geometric statement of (8) is that all the points [math]s_n[/math] lie in the closed interval whose endpoints are [math]-\sum_{i=m}^{\infty} |a_i|[/math] and [math]\sum_{i=m}^{\infty} |a_i|[/math]. If (9) were false, it would mean that [math]\lim_{n \rightarrow \infty} s_n[/math] lay outside this interval, a positive distance away from it. But this cannot happen, since Sn is arbitrarily close to [math]\lim_{n \rightarrow \infty} s_n[/math] for [math]n[/math] sufficiently large.] Combining (7) and (9), we obtain the in-equality which was to be proved.

General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.