excans:237dbe9dad: Difference between revisions

From Stochiki
mNo edit summary
mNo edit summary
 
Line 14: Line 14:
1-e^{-50/100} - (1-e^{-40/100}) &= 1-e^{-r/100} - (1-e^{-60/100}) \\
1-e^{-50/100} - (1-e^{-40/100}) &= 1-e^{-r/100} - (1-e^{-60/100}) \\
e^{-40/100} - e^{-50/100} &= e^{-60/100} - e^{-r/100} \\
e^{-40/100} - e^{-50/100} &= e^{-60/100} - e^{-r/100} \\
e^{-r/100} &= e^{-60/100} - e^{-40/100} + e^{-50/100} = =0.4850 \\
e^{-r/100} &= e^{-60/100} - e^{-40/100} + e^{-50/100} = 0.4850 \\
-r/100 &= \ln(0.4850) = -0.7236 \\
-r/100 &= \ln(0.4850) = -0.7236 \\
r &= 72.36.
r &= 72.36.

Latest revision as of 22:39, 2 May 2023

Solution: D

The cumulative distribution function for the exponential distribution is

[[math]] F(x) = 1-e^{-\lambda x} = 1-e^{-x/\mu} = 1-e^{-x/100}, x \gt 0. [[/math]]

From the given probability data,

[[math]] \begin{align*} F(50) - F(40) &= F(r) - F(60) \\ 1-e^{-50/100} - (1-e^{-40/100}) &= 1-e^{-r/100} - (1-e^{-60/100}) \\ e^{-40/100} - e^{-50/100} &= e^{-60/100} - e^{-r/100} \\ e^{-r/100} &= e^{-60/100} - e^{-40/100} + e^{-50/100} = 0.4850 \\ -r/100 &= \ln(0.4850) = -0.7236 \\ r &= 72.36. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.