excans:514e64da01: Difference between revisions

From Stochiki
(Created page with "'''Solution: A''' Let X denote claim size. Then E[X] = [20(0.15) + 30(0.10) + 40(0.05) + 50(0.20) + 60(0.10) + 70(0.10) + 80(0.30)] = (3 + 3 + 2 + 10 + 6 + 7 + 24) = 55...")
 
mNo edit summary
 
Line 7: Line 7:
  E[X<sup>2</sup>] = 400(0.15) + 900(0.10) + 1600(0.05) + 2500(0.20) + 3600(0.10) + 4900(0.10) + 6400(0.30) = 60 + 90 + 80 + 500 + 360 + 490 + 1920 = 3500
  E[X<sup>2</sup>] = 400(0.15) + 900(0.10) + 1600(0.05) + 2500(0.20) + 3600(0.10) + 4900(0.10) + 6400(0.30) = 60 + 90 + 80 + 500 + 360 + 490 + 1920 = 3500


  Var[X] = E[X2] – (E[X])2 = 3500 – 3025 = 475 and Var[ X ] = 21.79 .
  Var[X] = E[X<sup>2</sup>] – (E[X])<sup>2</sup> = 3500 – 3025 = 475 and Var[ X ] = 21.79 .


Now the range of claims within one standard deviation of the mean is given by
Now the range of claims within one standard deviation of the mean is given by

Latest revision as of 12:13, 3 July 2024

Solution: A

Let X denote claim size. Then

E[X] = [20(0.15) + 30(0.10) + 40(0.05) + 50(0.20) + 60(0.10) + 70(0.10) + 80(0.30)] = (3 + 3 + 2 + 10 + 6 + 7 + 24) = 55
E[X2] = 400(0.15) + 900(0.10) + 1600(0.05) + 2500(0.20) + 3600(0.10) + 4900(0.10) + 6400(0.30) = 60 + 90 + 80 + 500 + 360 + 490 + 1920 = 3500
Var[X] = E[X2] – (E[X])2 = 3500 – 3025 = 475 and Var[ X ] = 21.79 .

Now the range of claims within one standard deviation of the mean is given by

[55.00 – 21.79, 55.00 + 21.79] = [33.21, 76.79]

Therefore, the proportion of claims within one standard deviation is

0.05 + 0.20 + 0.10 + 0.10 = 0.45 .

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.