excans:059393ed48: Difference between revisions

From Stochiki
(Created page with "'''Key: C''' <math display = "block"> \operatorname{E}[ X \wedge 500 ) = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5 </math> Let S denote the aggreg...")
 
mNo edit summary
 
Line 3: Line 3:
<math display = "block">
<math display = "block">


\operatorname{E}[ X \wedge 500 ) = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5
\operatorname{E}[ X \wedge 500 ] = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5


</math>
</math>
Line 11: Line 11:
<math display = "block">
<math display = "block">
\begin{aligned}
\begin{aligned}
&\operatorname{E}[ S ) = \operatorname{E}[ N ) \operatorname{E}[ X \wedge 500) = 20(110.5) = 2210 \\
&\operatorname{E}[ S ] = \operatorname{E}[ N ] \operatorname{E}[ X \wedge 500] = 20(110.5) = 2210 \\
&\operatorname{E}[ S ) = \operatorname{E}[ N )\operatorname{E}[ X \wedge 500) + \operatorname{E}[ ( X \wedge 500)^ 2 )\operatorname{E}[ N ) = 20(26,189) = 523, 780
&\operatorname{E}[ S ] = \operatorname{E}[ N ]\operatorname{E}[ X \wedge 500] + \operatorname{E}[ ( X \wedge 500)^ 2 )\operatorname{E}[ N ] = 20(26,189) = 523, 780
\end{aligned}
\end{aligned}
</math>
</math>

Latest revision as of 13:47, 14 May 2023

Key: C

[[math]] \operatorname{E}[ X \wedge 500 ] = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5 [[/math]]

Let S denote the aggregate distribution of retained claims.

[[math]] \begin{aligned} &\operatorname{E}[ S ] = \operatorname{E}[ N ] \operatorname{E}[ X \wedge 500] = 20(110.5) = 2210 \\ &\operatorname{E}[ S ] = \operatorname{E}[ N ]\operatorname{E}[ X \wedge 500] + \operatorname{E}[ ( X \wedge 500)^ 2 )\operatorname{E}[ N ] = 20(26,189) = 523, 780 \end{aligned} [[/math]]

The 90th percentile of [math]S[/math] is [math]2210 + 1.282 \sqrt{523,780} = 3137.82.[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.