excans:2f4a83bcd6: Difference between revisions

From Stochiki
(Created page with "'''Solution: C''' <math display = "block">A_X(t)=1 e^{\int_0^t \delta_r d r}=e^{.005 t^2+.1 t} \cdot A_Y(t)=(1+i)^t</math> Thus <math>e^{.005(20)^2+.1(20)}=e^4=</math> set <math>=(1+i)^{20}</math>. We want to find <math display="block"> (1+i)^{1.5}=\left((1+i)^{20}\right)^{1.5 / 20}=\left(e^4\right)^{1.5 / 20}=e^{.3}=1.34986 </math> '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |last=Hlynka |first=Myron |website=web2.uwindsor...")
 
mNo edit summary
 
Line 1: Line 1:
'''Solution: C'''
'''Solution: C'''


<math display = "block">A_X(t)=1 e^{\int_0^t \delta_r d r}=e^{.005 t^2+.1 t} \cdot A_Y(t)=(1+i)^t</math>
<math display = "block">A_X(t)=1 e^{\int_0^t \delta_r d r}=e^{.005 t^2+.1 t}, \, A_Y(t)=(1+i)^t</math>
Thus <math>e^{.005(20)^2+.1(20)}=e^4=</math> set <math>=(1+i)^{20}</math>. We want to find
Thus <math>e^{.005(20)^2+.1(20)}=e^4=</math> set <math>=(1+i)^{20}</math>. We want to find
<math display="block">
<math display="block">

Latest revision as of 17:14, 26 November 2023

Solution: C

[[math]]A_X(t)=1 e^{\int_0^t \delta_r d r}=e^{.005 t^2+.1 t}, \, A_Y(t)=(1+i)^t[[/math]]

Thus [math]e^{.005(20)^2+.1(20)}=e^4=[/math] set [math]=(1+i)^{20}[/math]. We want to find

[[math]] (1+i)^{1.5}=\left((1+i)^{20}\right)^{1.5 / 20}=\left(e^4\right)^{1.5 / 20}=e^{.3}=1.34986 [[/math]]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.