excans:20488cb6ea: Difference between revisions

From Stochiki
(Created page with "'''Answer: A''' <math>{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=>\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=>0.4=e^{-\beta t^{3} / 3 b^{10}}</math> <math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>")
 
No edit summary
Line 4: Line 4:


<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
{{soacopyright|2024}}

Revision as of 02:33, 18 January 2024

Answer: A

[math]{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=\gt\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=\gt0.4=e^{-\beta t^{3} / 3 b^{10}}[/math]

[math]==\gt0.4=e^{-\beta \cdot 100^{3} / 3}==\gt\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==\gt\beta=-\ln (0.4)(.003)=0.0027489[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.