excans:Dcb709e9a7: Difference between revisions
From Stochiki
(Created page with "'''Answer: A''' <math>\hat{H}(50)=\frac{1}{12}+\frac{1}{9}+\frac{1}{7}+\frac{1}{6}=0.50397</math> <math>\hat{S}(50)=e^{-0.50397}=0.60413</math> <math>V[\hat{H}(50)]=\frac{11}{12^{3}}+\frac{8}{9^{3}}+\frac{6}{7^{3}}+\frac{5}{6^{3}}=0.05798</math> <math>V[\hat{S}(50)]=\hat{S}(50)^{2} \times V[\hat{H}(50)]=0.02116=0.1455^{2}</math>") |
No edit summary |
||
Line 8: | Line 8: | ||
<math>V[\hat{S}(50)]=\hat{S}(50)^{2} \times V[\hat{H}(50)]=0.02116=0.1455^{2}</math> | <math>V[\hat{S}(50)]=\hat{S}(50)^{2} \times V[\hat{H}(50)]=0.02116=0.1455^{2}</math> | ||
{{soacopyright|2024}} |
Revision as of 02:33, 18 January 2024
Answer: A
[math]\hat{H}(50)=\frac{1}{12}+\frac{1}{9}+\frac{1}{7}+\frac{1}{6}=0.50397[/math]
[math]\hat{S}(50)=e^{-0.50397}=0.60413[/math]
[math]V[\hat{H}(50)]=\frac{11}{12^{3}}+\frac{8}{9^{3}}+\frac{6}{7^{3}}+\frac{5}{6^{3}}=0.05798[/math]
[math]V[\hat{S}(50)]=\hat{S}(50)^{2} \times V[\hat{H}(50)]=0.02116=0.1455^{2}[/math]